
1

Programming Accelerators with

OpenCL

Fall 2011

Programming Practice

Bernd Burgstaller

Yonsei University

Bernhard Scholz

The University of Sydney

OpenCL

2

Outline

Á GPGPU Device Architectures

Á Heterogeneous Multicores

Á GPGPU Programming Standard

Á OpenCL

Á Platform Model

Á Execution Model

Á Memory Model

Á Programming Model

Á Examples

Á vector addition

Á matrix multiplication

OpenCL

3

CPU vs. GPGPU Architectures

Á Chip area devoted to large ócontrolô

logic instead of ALU

Á to make single thread fast

Á pipelines & branch prediction

Å good for control-flow intensive workloads

Á out-of-order instruction scheduling & ILP

Á multi-level caches hide memory

latency

Á small register file (often 1) due to

small number of active threads

Á threads scheduled by OS (slow!)

ALU ALU

ALU ALU

Control

Cache

RAM RAM

CPU GPGPU

Á Large number of ALUs

Á Little space for ócontrolô logic and

caches

Á Many registers to support large

number of active threads

Á Hardware thread scheduling

Á fast! (little overhead, almost for free!)

Á High-bandwidth memory bus

Á 150GB/s to serve large number of ALUs

simultaneously

OpenCL

4

CPU vs. GPGPU

Á Pros: fast & agile, makes

single thread fast

Á good for highly sequential

workloads

Á Cons: lower carrying capacity

Ą optimized for low latency

CPU GPGPU

Á Cons: not so fast

Á Pros: can carry a lot

Ą optimized for throughput

OpenCL

5

A solution to the GPGPU hw and language pluralism

Open Compute Language (OpenCL)

1) Platform model

Á a high-level, generic, GPGPU architecture

2) Execution model

Á abstract representation of instruction streams

executing on platform (ókernelsô)

OpenCL lowers the entry-barrier to GPGPU programming!

platform

model

3) Memory model

Á memory regions and their interaction during

execution (like caches, RAM with CPUs)

4) Programming model

Á abstractions that programmer uses to design

& implement applications (like Pthreads on

CPUs)

OpenCL

6

OpenCL making of

Á OpenCL initially developed by Apple.

Á Meanwhile managed by non-profit technology consortium Khronos Group.

Á Widely agreed-upon industry standard.

Nov11

OpenCL

version 1.2

released

Jun10

OpenCL

version 1.1

released

Further information available at http://en.wikipedia.org/wiki/OpenCL

Khronos to release

conformance tests

to ensure high-

quality

implementations

May09

Dec08

Khronos publicly

releases OpenCL 1.0

as royalty-free

specification

Working Group

sends completed

draft to Khronos

Board for

ratification

Oct08

OpenCL working

group develops

draft into cross-

vendor

speficication

Apple proposes

OpenCL working

group and

contributes draft

specifications to

Khronos

Jun08

Apple works

with AMD, IBM, Intel

NVIDIA and others

on draft

proposal

http://en.wikipedia.org/wiki/OpenCL

OpenCL

7

History Lesson

Á PC graphic cards (GPUs) are predecessors of nowadays GPGPUs

Á Early on, GPUs provided more and more functionality to improve

gaming experience

Á off-loading of computations from CPU to GPU

Á early features were fixed-function:

Å textures: glistening surfaces, rust, water

Å lightning

Á GPU-computations were data-parallel by nature:

Á what we do for one pixel (usually) does not affect other pixels

Á Soon GPUs became programmable; programming languages

emerged that allowed to write programs that computed 2D and 3D

images (to be displayed on the computer screen)

Á openGL, Direct3D, DirectX

Á Today: GPUs can be programmed to do ógeneral-purposeô tasks,

hence the name general-purpose graphics processing unit (GPGPU)

OpenCL

8

Heterogenous vs. homogenous multiprocessors

Á Heterogenous: from Greek heterogenǛs,

 ñconsisting of diverse ingredientsò.

Á Nowadays architectures are heterogeneous

multiprocessors:

Á The GPGPU has a different architecture than any of

the CPUs.

Á A GPGPU program cannot run on a CPU.

Á A CPU-program cannot run on the GPGPU.

Á In comparison: the 2 Intel Xeon processors on the

elc1 server are homogeneous multiprocessors.

Á All 4 cores of the Xeons are of the same

architecture.

Á A program compiled for the Xeon can execute on

any of its cores.

Core 1 Core 2

Core 3 Core 4

Intel Xeon E5405 CPU

GPGPU

heterogeneous

homogeneous

OpenCL

9

Outline

Á GPGPU Device Architectures

Á Heterogeneous Multicores

Á GPGPU Programming Standard

Á OpenCL

Á Platform Model

Á Execution Model

Á Memory Model

Á Programming Model

Á Examples

Á vector addition

Á matrix multiplication

Å & optimizations thereof

Á GNU Make and OpenCL SDKs

coming next

OpenCL

10

OpenCL Platform Model

OpenCL Platform describes a ógenericô hardware model

Á Key idea:

Á abstract from vendor-specific GPGPU hardware details, focus on commonalities

Á OpenCL Platform Building blocks:

Á One Host + one or more Compute Devices (CDs)

Á Each Compute Device is composed of one or more Compute Units (CUs)

Á Each Compute Unit consists of one or more Processing Elements (PEs)

Host

(the CPU)

P

E
...

Compute Unit

P

E

P

E

P

E P

E
...

Compute Unit

P

E

P

E

P

E P

E
...

Compute Unit

P

E

P

E

P

E

Device

P

E
...

Compute Unit

P

E

P

E

P

E P

E
...

Compute Unit

P

E

P

E

P

E P

E
...

Compute Unit

P

E

P

E

P

E

Device

P

E
...

Compute Unit

P

E

P

E

P

E P

E
...

Compute Unit

P

E

P

E

P

E P

E
...

Compute Unit

P

E

P

E

P

E

Device

Á The host coordinates

execution of OpenCL

code on the devices.

Á The host can compute

itself, too.

Á Pthreads

Á AVX, ...

OpenCL

11

OpenCL Example Platforms

Computer consisting of x86 CPU (host) and a GPGPU card

(compute device) supporting OpenCL. Each of the GPGPUós

SMs is a compute unit.

Á multiple GPGPU cards possible

Á = multiple compute devices

Computer consisting of x86 CPU and GPGPU on single chip

Single Intel CPU can serve as OpenCL platform. The cores serve

both as host and compute devices. AVX registers are the

OpenCL processing elements.

Á Intel OpenCL Software Development Kit (SDK)

Á available for CPUs with AVX and SSE >= 4.1 vector extensions

OpenCL

12

Execution Model

Á 1024 multiplication operations make up the problem domain

Á each multiplication is a so-called work item in OpenCL

Á one OpenCL kernel instance will execute for each work item

Á get_global_id (0) retrieves the kernel instanceôs thread id

OpenCL kernel (data-parallel)

#define MAX 1024

float in[MAX];

float result[MAX];

void scalar_sqr (int n,

 const float *in,

 float *result)

{

 int i ;

 for (i =0; i <n; i ++)

 result[i] = in[i] * in[i];

}

__kernel void hello_kernel (__global const float *in,

 __global float *result)

{

 int id = get_global_id (0) ;

 result[id] = in[id] * in[id];

} // execute in parallel over ónô work- items

Scalar

OpenCL

13

Kernel

Á Kernel is a data-parallel function executed for each work-item:

__kernel void square_kernel (__global const float *in,

 __global float *result)

{

 int id = get_global_id (0) ;

 result[id] = in[id] * in[id];

} // execute in parallel over ónô work- items

#define MAX 16

float in[MAX];

float result[MAX];

4 5 3 8 7 9 1 0 5 5 3 7 9 2 6 4

16 25 9 64 49 81 1 0 25 25 9 49 81 4 36 16

id=2

get_global_id (0)

in

result

Á get_global_id (0) tellôs the threadôs id.

Á used by thread to determine the work-item to work on

Á similar to the óidô argument value that we passed to Pthread functions

OpenCL

14

Work Items & Workgroups

Á Work items are organized in workgroups

Á Work items of a single workgroup run in parallel on the PEs of a single

compute unit (CU).

Á However, a compute unit has only a limited number of processing elements (PEs)!

Á Therefore we need multiple workgroups to utilize multiple CUs!

4 5 3 8 7 5 5 3 7 9 in: 9 2 6 4

Group ID 0 Group ID 1 Group ID N

OpenCL

15

Work items and workgroups

get_global_size = 26

get_group_id = 0 get_group_id = 1

get_local_size = 13 get_local_size = 13

get_local_id = 8

get_global_id = 21

__kernel void foo (__global const float *in) {

 int gid = get_global_id (0); // 21

 int lid = get_local_id (0); // 8

 int glsz = get_global_size (0); // 26

 int losz = get_local_size (0); // 13

 int grid = get_group_id (0); // 1

}

4 5 3 8 7 9 1 0 5 5 3 7 9 2 6 4 1 0 5 5 3 1 9 2 6 1

Group ID 0 Group ID 1

Á global_size: size of the problem domain

Á local_size: size of single workgroup

Á global_id: index of thread within

problem domain

Á local_id: index of thread within

workgroup

Á group_id: id of the workgroup

OpenCL

16

Work items and workgroups (cont.)

Á Work items are arranged in workgroups

Á each workgroup assigned to single CU Ą parallelism between CUs

Á multiple workgroups can go on same CU

Á Number of work items and size of workgroups specified by NDRange,

which is a 1D, 2D or 3D index space.

Á An NDRange consists of:

1) the number of dimensions

2) the global size in each dimension

3) the size of work groups (local size) in each dimension

Á Examples:

From previous slide:

Á #dimensions = 1 (1D)

Á global size = 26

Á workgroup size = 13

From next slide:

Á #dimensions = 2 (2D)

Á global size = 1024 x 1024

Á workgroup size = 128 x 128

size_t globalWorkSize [1] = { 26 };

size_t localWorkSize [1] = { 13 };

size_t globalWorkSize [2] = { 1024, 1024 };

size_t localWorkSize [2] = { 128, 128 };

OpenCL

17

2-dimensional NDRange

Á Global dimensions: 1024 x 1024 (whole problem space)

Á Workgroup size (local dimensions): 128 x 128 (executed together on CU)

Á not all dimensions work equally well in terms of performance

Á weôll discuss this later on...

OpenCL

18

NDRange: 12 x 6 global size, 3 x 2 workgroup size

gx

gx = global_id (0)
gy

gy = global_id (1)
0 1 2 3 4 5

0

2

3

4

5

1

6

7

8

9

10

11

wgy 0
1 2

WG

0,0
WG

0,1

WG

0,2

WG

1,0

WG

1,1

WG

1,2

WG

2,0

WG

2,1

WG

2,2

WG

3,0

WG

3,1

WG

3,2

wgx

0

1

2

3

wgx = group_id (0)

wgy = group_id (1)

Workgroup 2, 2

WI

0,0

WI

0,1

WI

1,0

WI

1,1

WI

2,0

WI

2,1

WI: work item

lx = local_id (0)

ly = local_id (1)

ly

lx

