Programming Practice
Fall 2011

Programming Accelerators with
OpenCL

BerndBurgstaller
YonseiUniversity

BernhardScholz
The University of Sydney

OpenCL

Outline

A GPGPU Device Architectures

A Heterogeneous Multicores

A GPGPU Programming Standard
A OpenCL

A Platform Model

A Execution Model

A Memory Model

A Programming Model
A Examples

A vector addition

A matrix multiplication

A

A

A

OpenCL

CPU vs. GPGPU Architectures

Control

CPU

Chip area devoted
logic instead of ALU

to make single thread fast

A

A

pipelines & branch prediction

A good for control-flow intensive workloads

out-of-order instruction scheduling & ILP

multi-level caches hide memory
latency

small register file (often 1) due to
small number of active threads

A

threads scheduled by OS (slow!)

> >

p>N

GPGPU

arge ocontrol o
Largg number o?ALUs
Little space for
caches

Many registers to support large
number of active threads

Hardware thread scheduling
A fast! (little overhead, almost for free!)
High-bandwidth memory bus

A 150GB/s to serve large number of ALUs
simultaneously

6

C

or

OpenCL

CPU vs. GPGPU

CPU GPGPU

A Pros: fast & agile, makes A Cons: not so fast
single thread fast .
) _ _ A Pros: can carry a lot
A good for highly sequential A optimized for throughput
workloads

A Cons: lower carrying capacity
A optimized for low latency

OpenCL

A solution to the GPGPU hw and language pluralism

Open Compute Language (OpenCL)
1) Platform model

A a high-level, generic, GPGPU architecture
2) Execution model

A abstract representation of instruction streams
executing on platform |

platform
model

_‘ K I ,
U] =T

D 1_51.1\“{(' En

3) Memory model

A memory regions and their interaction during
execution (like caches, RAM with CPUSs)

4) Programming model

A abstractions that programmer uses to design

& implement applications (like Pthreads on
CPUS) OpenCL lowers the entry-barrier to GPGPU programming! 5

OpenCL

OpenCL making of

A OpenCL initially developed by Apple.

A Meanwhile managed by non-profit technology consortium Khronos Group.

A Widely agreed-upon industry standard.

Apple works OpenCL working
with AMD, IBM, Intel group develops Khronos publicly
NVIDIA and others draft into cross- releases OpenCL 1.0 OpenCL
on draft vendor as royalty-free version 1.1
proposal speficication specification released
l/ Jun08 \L Oct08 \l, May09 l Novi1l
T 1‘ Dec08 T Jun10 1‘
Apple proposes Working Group Khronos to release Op_enCL
OpenCL working sends completed conformance tests version 1.2
group and draft to Khronos to ensure high- released
contributes draft Board for quality
specifications to ratification implementations
Khronos

Further information available at http://en.wikipedia.org/wiki/OpenCL

http://en.wikipedia.org/wiki/OpenCL

OpenCL

History Lesson

A PC graphic cards (GPUs) are predecessors of nowadays GPGPUs
A Early on, GPUs provided more and more functionality to improve
gaming experience
A off-loading of computations from CPU to GPU

A early features were fixed-function:
A textures: glistening surfaces, rust, water
A lightning

A GPU-computations were data-parallel by nature:

A what we do for one pixel (usually) does not affect other pixels

A Soon GPUs became programmable; programming languages
emerged that allowed to write programs that computed 2D and 3D
images (to be displayed on the computer screen)

A openGL, Direct3D, DirectX

A Today: GPUs can be propgpuapmeedotbashks
hence the name general-purpose graphics processing unit (GPGPU)

OpenCL

Heterogenous vs. homogenous multiprocessors

A Heterogenous: from Greekh et er o,gen Ut

Aconsisting of diver s

A Nowadays architectures are heterogeneous
multiprocessors:

A The GPGPU has a different architecture than any of heterogeneous
the CPUs.

A A GPGPU program cannot run on a CPU.
A A CPU-program cannot run on the GPGPU.

A In comparison: the 2 Intel Xeon processors on the
elcl server are homogeneous multiprocessors.

A All 4 cores of the Xeons are of the same
architecture. Intel Xeon E5405 CPU

A A program compiled for the Xeon can execute on homogeneous
any of its cores.

OpenCL

Outline

A GPGPU Device Architectures
A Heterogeneous Multicores
A GPGPU Programming Standard
A OpenCL <:| coming next
A Platform Model
A Execution Model
A Memory Model
A Programming Model
A Examples
A vector addition

A matrix multiplication

A & optimizations thereof

A GNU Make and OpenCL SDKs

OpenCL

OpenCL Platform Model

Device
COTEL ‘_* = T A The host coordinates
Device execution of OpenCL
Dovice Host code on the devices.
A The host can compute
, the CPU .
| Compute U.nlt () itself, too.

Compute int A Pthreads
Compute Unit] A AVX, ...
PI|P|[P| |P
E[|E||E E

OpenCLPI| at f orm dgesedadi heas davad e mode
A Key idea:

A OpenCL Platform Building blocks:
A One Host + one or more Compute Devices (CDs)

A Each Compute Device is composed of one or more Compute Units (CUs)

A Each Compute Unit consists of one or more Processing Elements (PEs)

10

OpenCL

OpenCL Example Platforms

Computer consisting of x86 CPU (host) and a GPGPU card
@@I (computedevice) supporting OpenCL. E
g @ @ SMs is}acompute unit.
@ @ A multiple GPGPU cards possible
64 - A = multiple compute devices
(host) (compute device)
ocal mem | |oca mﬂ [local mem | [locel mem '| ég Computer consisting of x86 CPU and GPGPU on single chip
I
Core 1 Core 2 Core 3 Core 4 O
(e || == | [z | |z <
Core 5 Core 6 Core7 Core 8 g
[cache | | |cacte || |[Cacne | | |[cacte |

Single Intel CPU can serve as OpenCL platform. The cores serve
both as host and compute devices. AVX registers are the
OpenCL processing elements.
A Intel OpenCL Software Development Kit (SDK)
A available for CPUs with AVX and SSE >= 4.1 vector extensions

11

OpenCL

#define MAX 1024

float in[MAX];
float resultfMAX];

Execution Model

Scalar OpenCL kernel (data-parallel)
void scalar_sqr (int n, __kernel void hello_kernel (__global const float *in,
const float *in, __global float *result)
float *result) {
{ int id = get _global id ©) ;
int i;
for(i=0; i<n; i++) » result[id]= inid] *in[id 1
resultf i]=in[i]*in[i];
} } /'l execute in parall editemsver 0nfod
A 1024 multiplication operations make up the problem domain
A each multiplication is a so-called work item in OpenCL
A one OpenCL kernel instance will execute for each work item
A get_global_id O retrieves the kernel I nstanc

12

OpenCL

A Kernel is a data-parallel function executed for each work-item:

Kernel

A get_global_id

__kernel void square_kernel (__ global const float *in,
__global float *result)
{
int id = get global id) ;
#define MAX 16
result[id]= infid] *inlid 1,
float in[MAX];
} I/ execute in paralleditensver &énd wof| float resultfMAX];
get_global id (0)
id=2
4151318719105 |53[7]19]|2]|6]4] In
1625 9 [64]|49|81]| 1| 0 |25]|25(9 |49(81]| 4 |36|16]| result
O0) teltlhees t hreadds i d.

A used by thread to determine the work-item to work on

Ve

A s

i milar to the o6i do

a r g Rthmeadfanctiona | u e

t hati3s

OpenCL

Work Items & Workgroups

Group ID O GroupID 1 Group IDN

in:@BS Q?’?

Device

/ Compute Unit —_—

Device

= 1] /
Device) Host
| Compute Unit -l (the CPU)
-\ Compute Unit o
Compute Unit]
P||IP -
E||E

Work items are organized in workgroups

Work items of a single workgroup run in parallel on the PEs of a single
compute unit (CU).

A
A

A However, a compute unit has only a limited number of processing elements (PEs)!
A Therefore we need multiple workgroups to utilize multiple CUs!

14

OpenCL

Work items and workgroups

Group ID O Group ID 1
Jals]als]7]o|a]o]s]s]s]7[ad2]e|a]a]o]s]s]a]s]o]2]6[h
et global_size =26
<€ S — >
get_local_size =13 get_local_size =13
get_group_id =0 get group_id =1
<€ > <€ —>
get local _id =8
>
et_global id =21
. get_g _ -
“remel voidfoo (__global const _float in) { A global_size: size of the problem domain
A local_size: size of single workgroup

int gid = get global id 0); /121 . L .
int ld = get localid (0); //8 A global_id: index of thread within
int glsz = get global_size (0); /] 26 problem domain
int losz = get local_size (0); /113 . o L
int grid= get group_id (0); //1 A local id: index of thread within

\ workgroup

A group_id: id of the workgroup 15

OpenCL

Work items and workgroups (cont.)

A Work items are arranged in workgroups
A each workgroup assigned to single CU A parallelism between CUs

A multiple workgroups can go on same CU

A Number of work items and size of workgroups specified by NDRange,
which is a 1D, 2D or 3D index space.
A An NDRange consists of:
1) the number of dimensions

2) the global size in each dimension
3) the size of work groups (local size) in each dimension

A Examples:

From next slide:

A #dimensions =2 (2D)

A global size = 1024 x 1024
A workgroup size = 128 x 128

From previous slide:

A #dimensions =1 (1D)
A global size = 26

A workgroup size = 13

size t globalWorkSize [1] ={ 26 } size_ t globalWorkSize [2] ={ 1024, 1024
size t localWorkSize [1]={ 13 }; size t localWorkSize [2] ={ 128,128 1}

OpenCL

2-dimensional NDRange

A Global dimensions: 1024 x 1024 (whole problem space)
A Workgroup size (local dimensions): 128 x 128 (executed together on CU)

1024

barriers and memory fences
- Cannot synchronize outside
of a workgroup

* Choose the dimensions that are “best” for your algorithm
A not all dimensions work equally well in terms of performance

Aweodll discuss this | ater on. ..

Synchronization between work-items

possible only within workgroups:

17

OpenCL

NDRange: 12 x 6 global size, 3 x 2 workgroup size

° . 2 wg,y g, = global_id (0)
0O 1 2 3 4 5 |
’ i = g, = global_id (1)
°T L S I A | wg, = group_id (0)
14 WG WG WG
o1l [ol,o 1 o|,1 10 OI2 B wg, =group_id (1)
37 | | | |, =local_id (0)
a4+ [WG || we || wG _
]l [CLor 1l 12 l, =local_id (1)
I I I
v LI L]
74 WG WG WG Wi Wi
1 — 20 4 2,1 A 2,2 0,0 0,1
8 | | |
91 | | wi wi WI: work item
10 4+ — WG 7| WG | [W 1,0 1\{ |
30 -{}— 31 4} 32 y
nT I I | Wi Wi I
2,0 2,1 X
Ox VY

Workgroup 2, 2

18

