BEC: Bit-Level Static Analysis for
Reliability against Soft Errors

Yousun Ko and Bernd Burgstaller

Yonsei University

CGO 2024
2024.03. 05

What are Soft Errors?

* Transient bit flips by accident or on purpose. Stay until overwritten.
* On sequential logic (registers, internal flip-flops), combinational logic, DRAM, caches, signal buses etc.

* Real-world observations
e 2128 single bit upsets in SRAM of a satellite during a 286 day mission in low-earth orbit [NBM+2021]
* Linux kernel development delayed due to random memory corruption [Torvalds2022]

Alpha particles

Neutrons

P-type substrate

Diode Laser Station with Diode Laser Station with
- 2N J Multi-Area upgrade option Microscope

hd Y
N-MOSFET P-MOSFET

Courtesy of RISCURE https://www.riscure.com

2/13

https://www.sciencedirect.com/science/article/pii/S0273117720309054
https://lkml.iu.edu/hypermail/linux/kernel/2210.1/00691.html

Testing Reliability against Soft Errors

* |Inject a soft error on hardware while a program is running, and observe the outcome

<regls> <reg2> <reg3>
. . . >
Register file (Spatial surface)
@
< regl reg2 reg3
ol [2
= regl reg2 reg3
N regl reg2 reg3
2| |&
Q' regl reg2 reg3
41 |&
regl reg2 reg3

<

3/13

Testing Reliability against Soft Errors

* |Inject a soft error on hardware while a program is running, and observe the outcome

* Temporal-spatial location to inject a soft error can be narrowed down to live registers

)
0 |val = XOR input, key
]
1 | mod = ANDI val, 1
]
2 | BEQZ mod, bb.even
bb.even | __—— ——__ | bb.odd
3 | mul8 = SHL val, 3 4 | muld = SHL val, 2

v

v

<key>
<inputs <val> <mod>
Register file (Spatial surface)
9) :
< 1nput
o
wn
= val
3
3
S val mod
wn
c
) val
(@)
LS
v

3/13

Testing Reliability against Soft Errors

* |Inject a soft error on hardware while a program is running, and observe the outcome

* Temporal-spatial location to inject a soft error can be narrowed down to live registers

\
I 0 ‘val = XOR input, key! ' 0 ﬁ

1 | mod = ANDI val, 1
2
2 | BEQZ mod, bb.even

bb.even | ___— —~

<key>
<input>

<val>

<mod>»

1

bb.odd

3

mul8 = SHL val, 3 4 | muld = SHL val, 2

v v

Register file (Spatial surface)

ﬁ L]

S 1nput

()

(V5]

3

©

(@]

S val mod
(V5]

c

3

Q val
(@)

o
v

3/13

Testing Reliability against Soft Errors

* |Inject a soft error on hardware while a program is running, and observe the outcome
* Temporal-spatial location to inject a soft error can be narrowed down to live registers

e val is corrupted, error propagated to mod, and the control flow is diverted

0 |val = XOR input, key
]
1 | mod = ANDI val, 1
]

2 | BEQZ mod, bb.even

bb.even ‘r,,———”—"‘--,§=§ bb.odd

3 | mul8 = SHL val, 3 4 | muld = SHL val, 2

| | =

<key>
<inputs <val> <mod>
Register file (Spatial surface)
O :
< 1nput
§
= vaal
3
S
S val mod
=
3 val
(@]
L)

3/13

Previous Approaches: Value-level and Dynamic

* Dynamic analysis

* Performed on each program trace

* Under-approximates. Analysis required for every run of a program

* Value-level analysis (Inject-on-Read)

* Inject soft errors only when values are about to be read

)
0 |val = XOR input, key
]
1 | mod = ANDI val, 1
]
2 | BEQZ mod, bb.even
bb.even | __—— ——__ | bb.odd
3 | mul8 = SHL val, 3 4 | muld = SHL val, 2

v

v

<

<key>
<inputs <val> <mod>
Register file (Spatial surface)

9) :
< 1nput
o
= val
3
3
o v@l mod
“n
c
3 vel
(@)
LS

4/13

Previous Approaches: Value-level and Dynamic

* Dynamic analysis
* Performed on each program trace
* Under-approximates. Analysis required for every run of a program

* Value-level analysis (Inject-on-Read)
* Inject soft errors only when values are about to be read

<key>
<input> <val> <mod> R
Register file (Spatial surface)
O ,
) < input
D
0 |val = XOR input, key 0] |o
7 o val
3
9

1 | mod = ANDI val, 1 1
. (ol d
7 | BEQZ mod, bb.even The effects of soft errors] n/ *" ;1 mo

3 | mul8 = SHL val, 3 4 | mul4 = SHL val, 2 4| |&

v v

v 4/13

The Proposed Approach: Bit-level Static Analysis

 Static analysis: BEC (Bit-level Error Coalescing) Analysis

* The first bit-level static program analysis that tracks and classifies the effect of soft errors based on
program semantics

* Performed only once per program, at compile-time
e Overapproximates. Analysis holds for any program run
* Can be used by other compiler analyses and optimizations

. . <key>
* Bit-level analysis <inpﬁt> <val> <mod>
>
* A natural match for soft errors Register file (Spatial surface)
* Unveil hidden optimization opportunities in live values |5 -1
V) i 1 [e
]
0 |val = XOR input, key 0 il
v)
1 | mod = ANDI val, 1 1 g
\Z o -0
2 | BEQZ mod, bb.even 2 ©
bb.even | __—— ——__ | bb.odd &
(@)
3 | mul8 = SHL val, 3 4 | muld = SHL val, 2 31|4I|2
v v

<

5/13

Use Case 1: Fault Injection Campaign Pruning

* |Inject soft errors only on bits whose effects are analytically distinguishable

* 16 fault injection runs = 6 fault injection runs

* No loss in coverage

f

\S

A fault site:

One fault-injection run is required per
fault site to assess its vulnerability.

%

\’
0 |val = XOR input, key
]
1 | mod = ANDI val, 1
]
2 | BEQZ mod, bb.even
bb.even | __—— —_ | bb.odd
3 | mul8 = SHL val, 3 4 | muld = SHL val, 2

v

v

<key>
<inputs <val> <mod>
Register file (Spatial surface)
) jii(
< LN
o
= @
3
3
S o0 oo
“n
c
3 o|®
(@]
L)
v

6/13

Use Case 2: Vulnerability-aware Instr. Scheduling

* The use case within the compiler

e Schedule instructions to minimize the number of live fault sites

* Scheduling a new instruction <key> <vals <amod>
* at X adds 2 live fault sites - <.1npuf‘.c|> T — >
. . egister file atial surrace
e atY adds 6 live fault sites & (5p)
2
(@]
ol |8
¥ 7
0 |val = XOR input, key X 3
......................... | DI [
X .
------------------------- ¢ ssssssssssssnennnnnnnnnn® 1 gh
1 | mod = ANDI val, 1 P |-
J——— | T — PY: T
Y “anmnne
......................... e — >
2 | BEQZ mod, bb.even

v 7/13

BEC: Bit-value Analysis

Bit values help to understand the semantics of instructions X (T)
Forward data-flow analysis / \
Abstract interpretation \ /

Performed once per value definition
Lattice representatlon

of a bit value

<key> <val> <mod>
<lnput> >
Register file (Spatial surface)
O
¢ E X|IX|X[X
.)
0 |val = XOR input, key 0 “w
¥ = X[X|Xx[x
1 | mod = ANDI val, 1 1 -g
¥ 3 olelo|x
2 | BEQZ mod, bb.even 2 g
bb.even | ___—— ———_ | bb.odd =
3 | mul8 = SHL val, 3 || 4 | mulsa = sHL val, 2 32l
v 8/13

v v

BEC: Fault Index

* A Fault Index labels the effect of soft errors at each fault site
* Fault index @) is reserved for dead (ineffective) soft errors

* Equivalence relation

* Minimize the number of classes in the equivalence relation by coalescing

v v

e o . . A\
Initial fault index assignment: <key> <vals <mod>
. . <input>
* One fault index per fault site —— .
_ _ . . _ Register file (Spatial surface)
* No pair of bit locations considered equivalent
* Each fault index represents a singleton f% DP|@|@
L equivalence class 3 olele
T | mod = ANDI val, 1 3
O
2 o @ ®
2 | BEQZ mod, bb.even v
bb.even | ___—— ———_ | bb.odd =
3 | mul8 = SHL val, 3 || 4 | mulsa = sHL val, 2 4 VE,

9/13

BEC: Fault Index Coalescing

* Coalesces two equivalence classes if analysis finds fault indices to be equivalent
* Backward data-flow analysis

* Exploits the semantics of instructions
e ANDI instruction may mask three most-significant bits

<key>

<input> <val> <mod> R
Register file (Spatial surface)
O
! < [@lele[@
0 |val = XOR input, key 0 E
% = [@?@?(0)? ®]
1 | mod = ANDI val, 1 1 -g
o
Y S ©@|W]|1|© ©|®W|OQ
2 | BEQZ mod, bb.even 2 o
bb.even | ___—— ———_ | bb.odd =
3 | muls = sHL val, 3 | | 4 [mul4a = sHL val, 2 | [3[2)|8
\4 10/13

v v

BEC: Fault Index Coalescing

* Coalesces two equivalence classes if analysis finds fault indices to be equivalent
* Backward data-flow analysis

* Exploits the semantics of instructions
e ANDI instruction may mask three most-significant bits
e SHL instructions may mask two or three most-significant bits

<key>

<inputs <val> <mod>
Register file (Spatial surface) >
l 5 @]00|®
O |val = XOR input, key 0 &
7 = 0?02(0?(®
1 | mod = ANDI val, 1 1| |3
v o [@?@?@? ®]| B|®|B
2 | BEQZ mod, bb.even 2 o
bb.even | ___—— ———_ | bb.odd =
3 | mul8 = SHL val, 3 || 4 | mulsa = sHL val, 2 32l
v 10/13

v v

BEC: Fault Index Coalescing

* Coalesces two equivalence classes if analysis finds fault indices to be equivalent

* Backward data-flow analysis

* Exploits the semantics of instructions
e ANDI instruction may mask three most-significant bits
e SHL instructions may mask two or three most-significant bits

* BEQZ instruction may coalesce fault indices within the instr

O |val = XOR input, key
7
1 | mod = ANDI val, 1
7

2 | BEQZ mod, bb.even

bb.even | ___— —_

<key> <val>

<mod>

| <input>

Recall the bit-values of mod:

%)

010 |X

Any soft errors on @ makes mod non-zero, and

(BEQZ always branches to_bb_. odd

OO O

1

0?0707 ®

bb.odd

197197 @

3

mul8 = SHL val, 3 4 | muld = SHL val, 2

v v

(92e4uns [esodwia)

<

10/13

BEC: Fault Index Coalescing

Coalesces two equivalence classes if analysis finds fault indices to be equivalent

Backward data-flow analysis

Probes every paths in the data-flow graph for any conflicts in guesses

Overapproximates if the corrupted data is read by multiple sites

<key>
<input> <val> <mod> R
Register file (Spatial surface)
O
L £ [@[e]e]o
0 |val = XOR input, key 0 E
7 o 0|0|®|®
1 | mod = ANDI val, 1 1 -g
@)
v 3 0|0|®|® ®
2 | BEQZ mod, bb.even 2 o
bb.even | __—— ———_ | bb.odd =
3 | muls = SHL val, 3 || 4 | mula = SHL val, 2 32l
\4 10/13

v v

BEC: Fault Index Coalescing

* Coalesces two equivalence classes if analysis finds fault indices to be equivalent

* Backward data-flow analysis

* Coalesces fault indices backward until the analysis reaches the fixed point
e XOR instruction allows fault index coalescing irrespective of bit values

<key>

<input> <val> <mod> R
Register file (Spatial surface)
o
) s |19/0|®|®
0 |val = XOR input, key 0 E
7 o Q|O|®(®
1 | mod = ANDI val, 1 1 -g
¥ 3 o|o|o|e ®
2 | BEQZ mod, bb.even 2 o
bb.even | ___—— ———_ | bb.odd =
3 | muls = SHL val, 3 || 4 | mula = SHL val, 2 32l
v 10/13

v v

Experimental results: Fault Injection Pruning

bitcount dijkstra CRC32 adpcm enc | adpcm dec AES RSA SHA
Live in values 26 272 230 336 245 760 2 819904 2003 744 150 112 1026 304 421 632
Live in bits 20571 229 409 211176 2424 874 1653714 105 025 1025436 371294
Masked bits 2 506 70 7 368 71 000 258 000 680 434 10 660
Inferrable bits 3195 857 26 216 324 030 92 030 44 407 434 39678
T°Lar'ut:;:"s 21.70 % 040% | 14.07% | 14.01% | 17.47% | 30.04% 0.08% | 11.94%
* Implemented in LLVM 16, validated and evaluated on RISC-V
* Pruned up to 30.04% (13.71% on average)
» Effectiveness varies by the benchmark characteristics
* bitcount: Abundant bit operations ©
» Adaptive differential pulse-code modulation: value quantization ©
* CRC32: Abstract Binary Interface ©
» RSA: arithmetic operations ®
* dijkstra: arithmetic and memory operations ®
* AES: memory operations but with bit-value agnostic machine instructions © © 11/13

Experimental results: Vulnerability-aware Instr. Sched.

bitcount dijkstra CRC32 adpcm enc | adpcm dec AES RSA SHA
Total fault space 541696 | 27286528 | 2922496 | 58426368 | 44085248 | 3180544 | 18295808 | 7483392
Best reliability 85018 159 966 348384 | 28401348 | 19400720 | 1928214 | 8650606 | 2559116
Worst reliability 94 366 166 074 394040 | 28530244 | 19538104 | 2077194 | 8764640 | 2688188
Worst/Best 111.00 % 103.82 % 113.11 % 100.45 % 100.71 % 104.10 % 101.32 % 105.04 %
L“;I"i’;ﬁ;’lii +11.00% | +3.82% | +13.11% | +045% | +0.71% | +4.10% | +1.32% | +5.04%

Implemented in LLVM 16, validated and evaluated on RISC-V

Reliability improved up to 13.11% (4.94% on average)
* Comparable to existing stand-alone methods

The more dead fault sites the better

Longevity of dead fault sites

12/13

More in the Paper and the Code!

* Pre-print: Yousun Ko and Bernd Burgstaller, BEC: Bit-Level Static Analysis for
Reliability against Soft Errors, https://arxiv.org/abs/2401.05753

* Source code on GitHub: https://github.com/yousunko/BEC

13/13

https://arxiv.org/abs/2401.05753
https://github.com/yousunko/BEC

More in the Paper and the Code!

* Pre-print: Yousun Ko and Bernd Burgstaller, BEC: Bit-Level Static Analysis for
Reliability against Soft Errors, https://arxiv.org/abs/2401.05753

* Source code on GitHub: https://github.com/yousunko/BEC

Thank you! ©

13/13

https://arxiv.org/abs/2401.05753
https://github.com/yousunko/BEC

	슬라이드 1: BEC: Bit-Level Static Analysis for Reliability against Soft Errors
	슬라이드 2: What are Soft Errors?
	슬라이드 3: Testing Reliability against Soft Errors
	슬라이드 4: Testing Reliability against Soft Errors
	슬라이드 5: Testing Reliability against Soft Errors
	슬라이드 6: Testing Reliability against Soft Errors
	슬라이드 7: Previous Approaches: Value-level and Dynamic
	슬라이드 8: Previous Approaches: Value-level and Dynamic
	슬라이드 9: The Proposed Approach: Bit-level Static Analysis
	슬라이드 10: Use Case 1: Fault Injection Campaign Pruning
	슬라이드 11: Use Case 2: Vulnerability-aware Instr. Scheduling
	슬라이드 12: BEC: Bit-value Analysis
	슬라이드 13: BEC: Fault Index
	슬라이드 14: BEC: Fault Index Coalescing
	슬라이드 15: BEC: Fault Index Coalescing
	슬라이드 16: BEC: Fault Index Coalescing
	슬라이드 17: BEC: Fault Index Coalescing
	슬라이드 18: BEC: Fault Index Coalescing
	슬라이드 19: Experimental results: Fault Injection Pruning
	슬라이드 20: Experimental results: Vulnerability-aware Instr. Sched.
	슬라이드 21: More in the Paper and the Code!
	슬라이드 22: More in the Paper and the Code!

