
BEC: Bit-Level Static Analysis for
Reliability against Soft Errors

Yousun Ko and Bernd Burgstaller

Yonsei University

CGO 2024

2024. 03. 05

/13

What are Soft Errors?
• Transient bit flips by accident or on purpose. Stay until overwritten.

• On sequential logic (registers, internal flip-flops), combinational logic, DRAM, caches, signal buses etc.

• Real-world observations
• 2128 single bit upsets in SRAM of a satellite during a 286 day mission in low-earth orbit [NBM+2021]

• Linux kernel development delayed due to random memory corruption [Torvalds2022]

2

Laser

Neutrons

Alpha particles

N+ N+ P+ P+

P-well N-well

P-type substrate

src drain
gate

drain src
gate

N-MOSFET P-MOSFET

Current
Surge

Courtesy of RISCURE https://www.riscure.com

Diode Laser Station with
Multi-Area upgrade option

Diode Laser Station with
Microscope

https://www.sciencedirect.com/science/article/pii/S0273117720309054
https://lkml.iu.edu/hypermail/linux/kernel/2210.1/00691.html

/13

• Inject a soft error on hardware while a program is running, and observe the outcome

Testing Reliability against Soft Errors

3

0

C
ycles (Tem

p
o

ral su
rface)

Register file (Spatial surface)

1

2

4

reg1 reg2 reg3

reg1 reg2 reg3

reg1 reg2 reg3

reg1 reg2 reg3

reg1 reg2 reg3

<reg2> <reg3><reg1>

/13

• Inject a soft error on hardware while a program is running, and observe the outcome

• Temporal-spatial location to inject a soft error can be narrowed down to live registers

Testing Reliability against Soft Errors

3

0

C
ycles (Tem

p
o

ral su
rface)

Register file (Spatial surface)

1

2

4

input

val

val mod

val

mod = ANDI val, 11

BEQZ mod, bb.even2

mul8 = SHL val, 33

bb.even

mul4 = SHL val, 24

bb.odd

val = XOR input, key0

<val> <mod>
<input>
<key>

/13

• Inject a soft error on hardware while a program is running, and observe the outcome

• Temporal-spatial location to inject a soft error can be narrowed down to live registers

Testing Reliability against Soft Errors

3

0

C
ycles (Tem

p
o

ral su
rface)

Register file (Spatial surface)

1

2

4

input

val mod

val

mod = ANDI val, 11

BEQZ mod, bb.even2

mul8 = SHL val, 33

bb.even

mul4 = SHL val, 24

bb.odd

val = XOR input, key0

<val> <mod>
<input>
<key>

val

/13

• Inject a soft error on hardware while a program is running, and observe the outcome

• Temporal-spatial location to inject a soft error can be narrowed down to live registers

• val is corrupted, error propagated to mod, and the control flow is diverted

Testing Reliability against Soft Errors

3

0

C
ycles (Tem

p
o

ral su
rface)

Register file (Spatial surface)

1

2

3

input

val mod

val

mod = ANDI val, 11

BEQZ mod, bb.even2

mul8 = SHL val, 33

bb.even

mul4 = SHL val, 24

bb.odd

val = XOR input, key0

<val> <mod>
<input>
<key>

val

/13

Previous Approaches: Value-level and Dynamic

4

0

C
ycles (Tem

p
o

ral su
rface)

Register file (Spatial surface)

1

2

4

input

val

val mod

val

mod = ANDI val, 11

BEQZ mod, bb.even2

mul8 = SHL val, 33

bb.even

mul4 = SHL val, 24

bb.odd

val = XOR input, key0

<val> <mod>
<input>
<key>

• Dynamic analysis
• Performed on each program trace

• Under-approximates. Analysis required for every run of a program

• Value-level analysis (Inject-on-Read)
• Inject soft errors only when values are about to be read

/13

Previous Approaches: Value-level and Dynamic

4

0

C
ycles (Tem

p
o

ral su
rface)

Register file (Spatial surface)

1

2

4

input

val

val mod

val

mod = ANDI val, 11

BEQZ mod, bb.even2

mul8 = SHL val, 33

bb.even

mul4 = SHL val, 24

bb.odd

val = XOR input, key0

<val> <mod>
<input>
<key>

• Dynamic analysis
• Performed on each program trace

• Under-approximates. Analysis required for every run of a program

• Value-level analysis (Inject-on-Read)
• Inject soft errors only when values are about to be read

The effects of soft errors
are analytically identical

/13

The Proposed Approach: Bit-level Static Analysis

5

0

C
ycles (Tem

p
o

ral su
rface)

Register file (Spatial surface)

1

2

4

mod = ANDI val, 11

BEQZ mod, bb.even2

mul8 = SHL val, 33

bb.even

mul4 = SHL val, 24

bb.odd

val = XOR input, key0

<val> <mod>
<input>
<key>

• Static analysis: BEC (Bit-level Error Coalescing) Analysis
• The first bit-level static program analysis that tracks and classifies the effect of soft errors based on

program semantics
• Performed only once per program, at compile-time
• Overapproximates. Analysis holds for any program run
• Can be used by other compiler analyses and optimizations

• Bit-level analysis
• A natural match for soft errors
• Unveil hidden optimization opportunities in live values

3

/13

Use Case 1: Fault Injection Campaign Pruning

6

C
ycles (Tem

p
o

ral su
rface)

Register file (Spatial surface)

mod = ANDI val, 11

BEQZ mod, bb.even2

mul8 = SHL val, 33

bb.even

mul4 = SHL val, 24

bb.odd

val = XOR input, key0

<val> <mod>
<input>
<key>

• Inject soft errors only on bits whose effects are analytically distinguishable

• 16 fault injection runs → 6 fault injection runs

• No loss in coverage

0

1

2

43

A fault site:
One fault-injection run is required per

fault site to assess its vulnerability.

/13

• The use case within the compiler

• Schedule instructions to minimize the number of live fault sites

• Scheduling a new instruction
• at X adds 2 live fault sites

• at Y adds 6 live fault sites

Use Case 2: Vulnerability-aware Instr. Scheduling

7

0

C
ycles (Tem

p
o

ral su
rface)

Register file (Spatial surface)

1

Y

2

mod = ANDI val, 11

BEQZ mod, bb.even2

val = XOR input, key0

<val> <mod>
<input>
<key>

X

Y

X

/13

BEC: Bit-value Analysis
• Bit values help to understand the semantics of instructions

• Forward data-flow analysis

• Abstract interpretation

• Performed once per value definition

8

X

X

X

X

0

C
ycles (Tem

p
o

ral su
rface)

Register file (Spatial surface)

1

2

mod = ANDI val, 11

BEQZ mod, bb.even2

mul8 = SHL val, 33

bb.even

mul4 = SHL val, 24

bb.odd

val = XOR input, key0

<val> <mod>
<input>
<key>

XXX

XX X

X000XXX

XXX

43

X ()

0 1

Lattice representation
of a bit value

/13

BEC: Fault Index

9

• A Fault Index labels the effect of soft errors at each fault site
• Fault index ⓪ is reserved for dead (ineffective) soft errors

• Equivalence relation

• Minimize the number of classes in the equivalence relation by coalescing

⑦

⑪

⑪

③

0

C
ycles (Tem

p
o

ral su
rface)

Register file (Spatial surface)

1

2

<val> <mod>
<input>
<key>

①②④

⑥⑧ ⑤

⑬⑭⑮⑯⑨⑩⑫

⑨⑩⑫

43

mod = ANDI val, 11

BEQZ mod, bb.even2

mul8 = SHL val, 33

bb.even

mul4 = SHL val, 24

bb.odd

val = XOR input, key0

Initial fault index assignment:
• One fault index per fault site
• No pair of bit locations considered equivalent
• Each fault index represents a singleton

equivalence class

/13

BEC: Fault Index Coalescing

10

• Coalesces two equivalence classes if analysis finds fault indices to be equivalent

• Backward data-flow analysis

• Exploits the semantics of instructions
• ANDI instruction may mask three most-significant bits

⓪?

⑪

⑪

③

0

C
ycles (Tem

p
o

ral su
rface)

Register file (Spatial surface)

1

2

<val> <mod>
<input>
<key>

①②④

⓪?⓪? ⑤

⑬⑭⑮⑯⑨⑩⑫

⑨⑩⑫

43

mod = ANDI val, 11

BEQZ mod, bb.even2

mul8 = SHL val, 33

bb.even

mul4 = SHL val, 24

bb.odd

val = XOR input, key0

/13

BEC: Fault Index Coalescing

10

• Coalesces two equivalence classes if analysis finds fault indices to be equivalent

• Backward data-flow analysis

• Exploits the semantics of instructions
• ANDI instruction may mask three most-significant bits

• SHL instructions may mask two or three most-significant bits

⓪?

⓪?

⓪?

③

0

C
ycles (Tem

p
o

ral su
rface)

Register file (Spatial surface)

1

2

<val> <mod>
<input>
<key>

①②④

⓪?⓪? ⑤

⑬⑭⑮⑯⑨⓪?⓪?

⑨⓪?⓪?

43

mod = ANDI val, 11

BEQZ mod, bb.even2

mul8 = SHL val, 33

bb.even

mul4 = SHL val, 24

bb.odd

val = XOR input, key0

/13

BEC: Fault Index Coalescing

10

• Coalesces two equivalence classes if analysis finds fault indices to be equivalent

• Backward data-flow analysis

• Exploits the semantics of instructions
• ANDI instruction may mask three most-significant bits

• SHL instructions may mask two or three most-significant bits

• BEQZ instruction may coalesce fault indices within the instr

⓪?

⓪?

⓪?

③

0

C
ycles (Tem

p
o

ral su
rface)

Register file (Spatial surface)

1

2

<val> <mod>
<input>
<key>

①②④

⓪?⓪? ⑤

⑬⑯?⑯?⑯⑨⓪?⓪?

⑨⓪?⓪?

43

mod = ANDI val, 11

BEQZ mod, bb.even2

mul8 = SHL val, 33

bb.even

mul4 = SHL val, 24

bb.odd

val = XOR input, key0

Recall the bit-values of mod:
Any soft errors on 0 makes mod non-zero, and
BEQZ always branches to bb.odd

X000

/13

• Coalesces two equivalence classes if analysis finds fault indices to be equivalent

• Backward data-flow analysis

• Probes every paths in the data-flow graph for any conflicts in guesses

• Overapproximates if the corrupted data is read by multiple sites

BEC: Fault Index Coalescing

10

⓪

⓪

⓪

③

0

C
ycles (Tem

p
o

ral su
rface)

Register file (Spatial surface)

1

2

<val> <mod>
<input>
<key>

①②④

⑥⓪ ⑤

⑬⑯⑯⑯⑨⑩⓪

⑨⑩⓪

43

mod = ANDI val, 11

BEQZ mod, bb.even2

mul8 = SHL val, 33

bb.even

mul4 = SHL val, 24

bb.odd

val = XOR input, key0

/13

• Coalesces two equivalence classes if analysis finds fault indices to be equivalent

• Backward data-flow analysis

• Coalesces fault indices backward until the analysis reaches the fixed point
• XOR instruction allows fault index coalescing irrespective of bit values

BEC: Fault Index Coalescing

10

⓪

⓪

0

C
ycles (Tem

p
o

ral su
rface)

Register file (Spatial surface)

1

2

<val> <mod>
<input>
<key>

⑤⑥⓪

⑬⑯⑯⑯⑨⑩⓪

43

mod = ANDI val, 11

BEQZ mod, bb.even2

mul8 = SHL val, 33

bb.even

mul4 = SHL val, 24

bb.odd

val = XOR input, key0

⓪ ⑨⑩⓪

⓪ ⑥⓪ ⑤

/13

Experimental results: Fault Injection Pruning

11

bitcount dijkstra CRC32 adpcm enc adpcm dec AES RSA SHA

Live in values 26 272 230 336 245 760 2 819 904 2 003 744 150 112 1 026 304 421 632

Live in bits 20 571 229 409 211 176 2 424 874 1 653 714 105 025 1 025 436 371 294

Masked bits 2 506 70 7 368 71 000 258 000 680 434 10 660

Inferrable bits 3 195 857 26 216 324 030 92 030 44 407 434 39 678

Total FI runs
pruned

21.70 % 0.40 % 14.07 % 14.01 % 17.47 % 30.04 % 0.08 % 11.94 %

• Implemented in LLVM 16, validated and evaluated on RISC-V

• Pruned up to 30.04% (13.71% on average)

• Effectiveness varies by the benchmark characteristics

• bitcount: Abundant bit operations ☺

• Adaptive differential pulse-code modulation: value quantization ☺

• CRC32: Abstract Binary Interface ☺

• RSA: arithmetic operations

• dijkstra: arithmetic and memory operations

• AES: memory operations but with bit-value agnostic machine instructions ☺☺

/13

Experimental results: Vulnerability-aware Instr. Sched.

12

bitcount dijkstra CRC32 adpcm enc adpcm dec AES RSA SHA

Total fault space 541 696 27 286 528 2 922 496 58 426 368 44 085 248 3 180 544 18 295 808 7 483 392

Best reliability 85 018 159 966 348 384 28 401 348 19 400 720 1 928 214 8 650 606 2 559 116

Worst reliability 94 366 166 074 394 040 28 530 244 19 538 104 2 077 194 8 764 640 2 688 188

Worst/Best 111.00 % 103.82 % 113.11 % 100.45 % 100.71 % 104.10 % 101.32 % 105.04 %

Improved
Reliability

+11.00 % +3.82 % +13.11 % +0.45 % +0.71 % +4.10 % +1.32 % +5.04 %

• Implemented in LLVM 16, validated and evaluated on RISC-V

• Reliability improved up to 13.11% (4.94% on average)
• Comparable to existing stand-alone methods

• The more dead fault sites the better

• Longevity of dead fault sites

/13

More in the Paper and the Code!

• Pre-print: Yousun Ko and Bernd Burgstaller, BEC: Bit-Level Static Analysis for
Reliability against Soft Errors, https://arxiv.org/abs/2401.05753

• Source code on GitHub: https://github.com/yousunko/BEC

13

https://arxiv.org/abs/2401.05753
https://github.com/yousunko/BEC

/13

More in the Paper and the Code!

• Pre-print: Yousun Ko and Bernd Burgstaller, BEC: Bit-Level Static Analysis for
Reliability against Soft Errors, https://arxiv.org/abs/2401.05753

• Source code on GitHub: https://github.com/yousunko/BEC

13

Thank you! ☺

https://arxiv.org/abs/2401.05753
https://github.com/yousunko/BEC

	슬라이드 1: BEC: Bit-Level Static Analysis for Reliability against Soft Errors
	슬라이드 2: What are Soft Errors?
	슬라이드 3: Testing Reliability against Soft Errors
	슬라이드 4: Testing Reliability against Soft Errors
	슬라이드 5: Testing Reliability against Soft Errors
	슬라이드 6: Testing Reliability against Soft Errors
	슬라이드 7: Previous Approaches: Value-level and Dynamic
	슬라이드 8: Previous Approaches: Value-level and Dynamic
	슬라이드 9: The Proposed Approach: Bit-level Static Analysis
	슬라이드 10: Use Case 1: Fault Injection Campaign Pruning
	슬라이드 11: Use Case 2: Vulnerability-aware Instr. Scheduling
	슬라이드 12: BEC: Bit-value Analysis
	슬라이드 13: BEC: Fault Index
	슬라이드 14: BEC: Fault Index Coalescing
	슬라이드 15: BEC: Fault Index Coalescing
	슬라이드 16: BEC: Fault Index Coalescing
	슬라이드 17: BEC: Fault Index Coalescing
	슬라이드 18: BEC: Fault Index Coalescing
	슬라이드 19: Experimental results: Fault Injection Pruning
	슬라이드 20: Experimental results: Vulnerability-aware Instr. Sched.
	슬라이드 21: More in the Paper and the Code!
	슬라이드 22: More in the Paper and the Code!

