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What are Soft Errors?

* Transient bit flips by accident or on purpose. Stay until overwritten.
* On sequential logic (registers, internal flip-flops), combinational logic, DRAM, caches, signal buses etc.

* Real-world observations
e 2128 single bit upsets in SRAM of a satellite during a 286 day mission in low-earth orbit [NBM+2021]
* Linux kernel development delayed due to random memory corruption [Torvalds2022]

Alpha particles

Neutrons

P-type substrate

Diode Laser Station with Diode Laser Station with
- 2N J Multi-Area upgrade option Microscope

hd Y
N-MOSFET P-MOSFET

Courtesy of RISCURE https://www.riscure.com

2/13



https://www.sciencedirect.com/science/article/pii/S0273117720309054
https://lkml.iu.edu/hypermail/linux/kernel/2210.1/00691.html

Testing Reliability against Soft Errors

* |Inject a soft error on hardware while a program is running, and observe the outcome
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Testing Reliability against Soft Errors

* |Inject a soft error on hardware while a program is running, and observe the outcome

* Temporal-spatial location to inject a soft error can be narrowed down to live registers

)
0 |val = XOR input, key
]
1 | mod = ANDI val, 1
]
2 | BEQZ mod, bb.even
bb.even | __—— ——__ | bb.odd
3 | mul8 = SHL val, 3 4 | muld = SHL val, 2

v
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Testing Reliability against Soft Errors

* |Inject a soft error on hardware while a program is running, and observe the outcome
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Testing Reliability against Soft Errors

* |Inject a soft error on hardware while a program is running, and observe the outcome
* Temporal-spatial location to inject a soft error can be narrowed down to live registers

e val is corrupted, error propagated to mod, and the control flow is diverted

0 |val = XOR input, key
]
1 | mod = ANDI val, 1
]

2 | BEQZ mod, bb.even
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Previous Approaches: Value-level and Dynamic

* Dynamic analysis

* Performed on each program trace

* Under-approximates. Analysis required for every run of a program

* Value-level analysis (Inject-on-Read)

* Inject soft errors only when values are about to be read

)
0 |val = XOR input, key
]
1 | mod = ANDI val, 1
]
2 | BEQZ mod, bb.even
bb.even | __—— ——__ | bb.odd
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Previous Approaches: Value-level and Dynamic

* Dynamic analysis
* Performed on each program trace
* Under-approximates. Analysis required for every run of a program

* Value-level analysis (Inject-on-Read)
* Inject soft errors only when values are about to be read

<key>
<input> <val> <mod> R
Register file (Spatial surface)
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The Proposed Approach: Bit-level Static Analysis

 Static analysis: BEC (Bit-level Error Coalescing) Analysis

* The first bit-level static program analysis that tracks and classifies the effect of soft errors based on
program semantics

* Performed only once per program, at compile-time
e Overapproximates. Analysis holds for any program run
* Can be used by other compiler analyses and optimizations

. . <key>
* Bit-level analysis <inpﬁt> <val> <mod>
>
* A natural match for soft errors Register file (Spatial surface)
* Unveil hidden optimization opportunities in live values |5 -1
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Use Case 1: Fault Injection Campaign Pruning

* |Inject soft errors only on bits whose effects are analytically distinguishable

* 16 fault injection runs = 6 fault injection runs

* No loss in coverage

f
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A fault site:

One fault-injection run is required per
fault site to assess its vulnerability.
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Use Case 2: Vulnerability-aware Instr. Scheduling

* The use case within the compiler

e Schedule instructions to minimize the number of live fault sites

* Scheduling a new instruction <key> <vals <amod>
* at X adds 2 live fault sites - <.1npuf‘.c|> T — >
. . egister file atial surrace
e atY adds 6 live fault sites & (5p )
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BEC: Bit-value Analysis

Bit values help to understand the semantics of instructions X (T)
Forward data-flow analysis / \
Abstract interpretation \ /

Performed once per value definition
Lattice representatlon

of a bit value

<key> <val> <mod>
<lnput> >
Register file (Spatial surface)
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BEC: Fault Index

* A Fault Index labels the effect of soft errors at each fault site
* Fault index @) is reserved for dead (ineffective) soft errors

* Equivalence relation

* Minimize the number of classes in the equivalence relation by coalescing

v v

e o . . A\
Initial fault index assignment: <key> <vals <mod>
. . <input>
* One fault index per fault site —— .
_ _ . . _ Register file (Spatial surface)
* No pair of bit locations considered equivalent
* Each fault index represents a singleton f% DP|@|@
L equivalence class 3 olele
T | mod = ANDI val, 1 3
O
2 o @ ®
2 | BEQZ mod, bb.even v
bb.even | ___—— ———_ | bb.odd =
3 | mul8 = SHL val, 3 || 4 | mulsa = sHL val, 2 4 VE,
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BEC: Fault Index Coalescing

* Coalesces two equivalence classes if analysis finds fault indices to be equivalent
* Backward data-flow analysis

* Exploits the semantics of instructions
e ANDI instruction may mask three most-significant bits
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BEC: Fault Index Coalescing

* Coalesces two equivalence classes if analysis finds fault indices to be equivalent
* Backward data-flow analysis

* Exploits the semantics of instructions
e ANDI instruction may mask three most-significant bits
e SHL instructions may mask two or three most-significant bits

<key>

<inputs <val> <mod>
Register file (Spatial surface) >
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v 10/13

v v



BEC: Fault Index Coalescing

* Coalesces two equivalence classes if analysis finds fault indices to be equivalent

* Backward data-flow analysis

* Exploits the semantics of instructions
e ANDI instruction may mask three most-significant bits
e SHL instructions may mask two or three most-significant bits

* BEQZ instruction may coalesce fault indices within the instr

O |val = XOR input, key
7
1 | mod = ANDI val, 1
7

2 | BEQZ mod, bb.even

bb.even | ___— —_

<key> <val>

<mod>

| <input>

Recall the bit-values of mod:
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BEC: Fault Index Coalescing

Coalesces two equivalence classes if analysis finds fault indices to be equivalent

Backward data-flow analysis

Probes every paths in the data-flow graph for any conflicts in guesses

Overapproximates if the corrupted data is read by multiple sites
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<input> <val> <mod> R
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BEC: Fault Index Coalescing

* Coalesces two equivalence classes if analysis finds fault indices to be equivalent

* Backward data-flow analysis

* Coalesces fault indices backward until the analysis reaches the fixed point
e XOR instruction allows fault index coalescing irrespective of bit values
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<input> <val> <mod> R
Register file (Spatial surface)
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Experimental results: Fault Injection Pruning

bitcount dijkstra CRC32 adpcm enc | adpcm dec AES RSA SHA
Live in values 26 272 230 336 245 760 2 819904 2003 744 150 112 1026 304 421 632
Live in bits 20571 229 409 211176 2424 874 1653714 105 025 1025436 371294
Masked bits 2 506 70 7 368 71 000 258 000 680 434 10 660
Inferrable bits 3195 857 26 216 324 030 92 030 44 407 434 39678
T°Lar'ut:;:"s 21.70 % 040% | 14.07% | 14.01% | 17.47% | 30.04% 0.08% | 11.94%
* Implemented in LLVM 16, validated and evaluated on RISC-V
* Pruned up to 30.04% (13.71% on average)
» Effectiveness varies by the benchmark characteristics
* bitcount: Abundant bit operations ©
» Adaptive differential pulse-code modulation: value quantization ©
* CRC32: Abstract Binary Interface ©
» RSA: arithmetic operations ®
* dijkstra: arithmetic and memory operations ®
* AES: memory operations but with bit-value agnostic machine instructions © © 11/13




Experimental results: Vulnerability-aware Instr. Sched.

bitcount dijkstra CRC32 adpcm enc | adpcm dec AES RSA SHA
Total fault space 541696 | 27286528 | 2922496 | 58426368 | 44085248 | 3180544 | 18295808 | 7483392
Best reliability 85018 159 966 348384 | 28401348 | 19400720 | 1928214 | 8650606 | 2559116
Worst reliability 94 366 166 074 394040 | 28530244 | 19538104 | 2077194 | 8764640 | 2688188
Worst/Best 111.00 % 103.82 % 113.11 % 100.45 % 100.71 % 104.10 % 101.32 % 105.04 %
L“;I"i’;ﬁ;’lii +11.00% | +3.82% | +13.11% | +045% | +0.71% | +4.10% | +1.32% | +5.04%

Implemented in LLVM 16, validated and evaluated on RISC-V

Reliability improved up to 13.11% (4.94% on average)
* Comparable to existing stand-alone methods

The more dead fault sites the better

Longevity of dead fault sites
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More in the Paper and the Code!

* Pre-print: Yousun Ko and Bernd Burgstaller, BEC: Bit-Level Static Analysis for
Reliability against Soft Errors, https://arxiv.org/abs/2401.05753

* Source code on GitHub: https://github.com/yousunko/BEC
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More in the Paper and the Code!

* Pre-print: Yousun Ko and Bernd Burgstaller, BEC: Bit-Level Static Analysis for
Reliability against Soft Errors, https://arxiv.org/abs/2401.05753

* Source code on GitHub: https://github.com/yousunko/BEC

Thank you! ©
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