
BEC: Bit-Level Static Analysis for
Reliability against Soft Errors

Yousun Ko and Bernd Burgstaller

Yonsei University

CGO 2024

2024. 03. 05



/13

What are Soft Errors?
• Transient bit flips by accident or on purpose. Stay until overwritten.

• On sequential logic (registers, internal flip-flops), combinational logic, DRAM, caches, signal buses etc.

• Real-world observations
• 2128 single bit upsets in SRAM of a satellite during a 286 day mission in low-earth orbit [NBM+2021]

• Linux kernel development delayed due to random memory corruption [Torvalds2022]
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• Inject a soft error on hardware while a program is running, and observe the outcome

Testing Reliability against Soft Errors
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• Inject a soft error on hardware while a program is running, and observe the outcome

• Temporal-spatial location to inject a soft error can be narrowed down to live registers

Testing Reliability against Soft Errors
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• Inject a soft error on hardware while a program is running, and observe the outcome

• Temporal-spatial location to inject a soft error can be narrowed down to live registers

• val is corrupted, error propagated to mod, and the control flow is diverted

Testing Reliability against Soft Errors
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Previous Approaches: Value-level and Dynamic
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• Dynamic analysis 
• Performed on each program trace

• Under-approximates. Analysis required for every run of a program

• Value-level analysis (Inject-on-Read)
• Inject soft errors only when values are about to be read
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• Dynamic analysis 
• Performed on each program trace

• Under-approximates. Analysis required for every run of a program

• Value-level analysis (Inject-on-Read)
• Inject soft errors only when values are about to be read

The effects of soft errors 
are analytically identical
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The Proposed Approach: Bit-level Static Analysis
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• Static analysis: BEC (Bit-level Error Coalescing) Analysis
• The first bit-level static program analysis that tracks and classifies the effect of soft errors based on 

program semantics
• Performed only once per program, at compile-time
• Overapproximates. Analysis holds for any program run
• Can be used by other compiler analyses and optimizations

• Bit-level analysis
• A natural match for soft errors
• Unveil hidden optimization opportunities in live values
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Use Case 1: Fault Injection Campaign Pruning
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• Inject soft errors only on bits whose effects are analytically distinguishable

• 16 fault injection runs → 6 fault injection runs

• No loss in coverage
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• The use case within the compiler

• Schedule instructions to minimize the number of live fault sites

• Scheduling a new instruction
• at X adds 2 live fault sites

• at Y adds 6 live fault sites

Use Case 2: Vulnerability-aware Instr. Scheduling
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BEC: Bit-value Analysis
• Bit values help to understand the semantics of instructions

• Forward data-flow analysis

• Abstract interpretation

• Performed once per value definition
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BEC: Fault Index
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• A Fault Index labels the effect of soft errors at each fault site
• Fault index ⓪ is reserved for dead (ineffective) soft errors

• Equivalence relation

• Minimize the number of classes in the equivalence relation by coalescing
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Initial fault index assignment:
• One fault index per fault site
• No pair of bit locations considered equivalent
• Each fault index represents a singleton 

equivalence class
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BEC: Fault Index Coalescing

10

• Coalesces two equivalence classes if analysis finds fault indices to be equivalent

• Backward data-flow analysis

• Exploits the semantics of instructions
• ANDI instruction may mask three most-significant bits
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BEC: Fault Index Coalescing
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• Coalesces two equivalence classes if analysis finds fault indices to be equivalent

• Backward data-flow analysis

• Probes every paths in the data-flow graph for any conflicts in guesses 

• Overapproximates if the corrupted data is read by multiple sites

BEC: Fault Index Coalescing
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• Coalesces two equivalence classes if analysis finds fault indices to be equivalent

• Backward data-flow analysis

• Coalesces fault indices backward until the analysis reaches the fixed point
• XOR instruction allows fault index coalescing irrespective of bit values

BEC: Fault Index Coalescing
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Experimental results: Fault Injection Pruning
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bitcount dijkstra CRC32 adpcm enc adpcm dec AES RSA SHA

Live in values 26 272 230 336 245 760 2 819 904 2 003 744 150 112 1 026 304 421 632

Live in bits 20 571 229 409 211 176 2 424 874 1 653 714 105 025 1 025 436 371 294

Masked bits 2 506 70 7 368 71 000 258 000 680 434 10 660

Inferrable bits 3 195 857 26 216 324 030 92 030 44 407 434 39 678

Total FI runs 
pruned

21.70 % 0.40 % 14.07 % 14.01 % 17.47 % 30.04 % 0.08 % 11.94 %

• Implemented in LLVM 16, validated and evaluated on RISC-V

• Pruned up to 30.04% (13.71% on average)

• Effectiveness varies by the benchmark characteristics

• bitcount: Abundant bit operations ☺

• Adaptive differential pulse-code modulation: value quantization ☺

• CRC32: Abstract Binary Interface ☺

• RSA: arithmetic operations 

• dijkstra: arithmetic and memory operations 

• AES: memory operations but with bit-value agnostic machine instructions ☺☺



/13

Experimental results: Vulnerability-aware Instr. Sched.
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bitcount dijkstra CRC32 adpcm enc adpcm dec AES RSA SHA

Total fault space 541 696 27 286 528 2 922 496 58 426 368 44 085 248 3 180 544 18 295 808 7 483 392

Best reliability 85 018 159 966 348 384 28 401 348 19 400 720 1 928 214 8 650 606 2 559 116

Worst reliability 94 366 166 074 394 040 28 530 244 19 538 104 2 077 194 8 764 640 2 688 188

Worst/Best 111.00 % 103.82 % 113.11 % 100.45 % 100.71 % 104.10 % 101.32 % 105.04 %

Improved 
Reliability

+11.00 % +3.82 % +13.11 % +0.45 % +0.71 % +4.10 % +1.32 % +5.04 %

• Implemented in LLVM 16, validated and evaluated on RISC-V

• Reliability improved up to 13.11% (4.94% on average)
• Comparable to existing stand-alone methods

• The more dead fault sites the better

• Longevity of dead fault sites
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More in the Paper and the Code!

• Pre-print: Yousun Ko and Bernd Burgstaller, BEC: Bit-Level Static Analysis for 
Reliability against Soft Errors, https://arxiv.org/abs/2401.05753

• Source code on GitHub: https://github.com/yousunko/BEC
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Thank you! ☺

https://arxiv.org/abs/2401.05753
https://github.com/yousunko/BEC
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