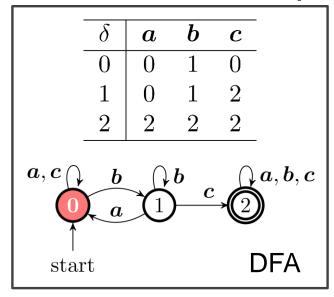
PARALLEL CONSTRUCTION OF SIMULTANEOUS DETERMINISTIC FINITE AUTOMATA ON SHARED-MEMORY MULTICORES

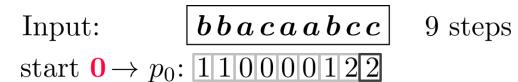
Minyoung Jung¹, Jinwoo Park¹, Johann Blieberger² and Bernd Burgstaller¹ ¹Yonsei University, Korea ²Vienna University of Technology, Austria

46th International Conference of Parallel Processing Bristol, United Kingdom in August 14 - 17, 2017

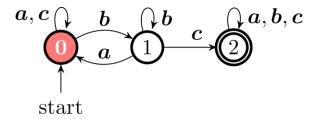
Motivation

- String pattern matching with finite automata (FAs) is a well-established method across many areas.
 - Text editors
 - Compiler front-ends
 - Internet search engines
 - Security and DNA sequence analysis
- The sequential FA algorithm has linear complexity in the size of the input.
 - Significant research effort has been spent on parallelizing FA matching to improve the sequential performance
 - □ → Hard to be parallelized due to the dependency between state transitions





δ	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}
0	0	1	0
1	0	1	2
2	2	2	2

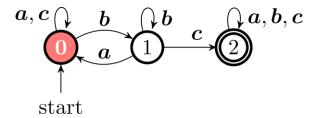


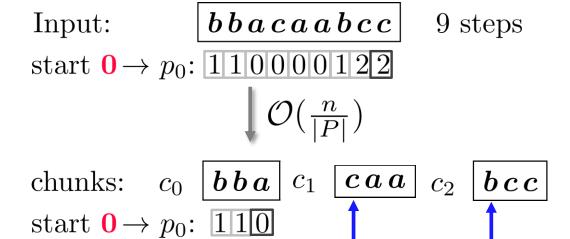
Input:
$$bbacaabcc$$
 9 steps start $0 \rightarrow p_0$: 110000122 $\mathcal{O}(\frac{n}{|P|})$

chunks:
$$c_0 \ \boxed{bba} \ c_1 \ \boxed{caa} \ c_2 \ \boxed{bcc}$$
 3 steps 3 steps 3 steps

Limitation of parallel FA matching

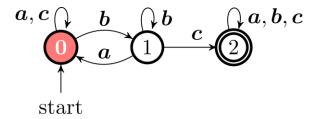
δ	\boldsymbol{a}	\boldsymbol{b}	c
0	0	1	0
1	0	1	2
2	2	2	2

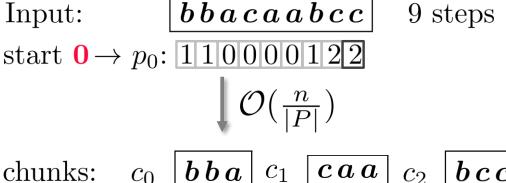




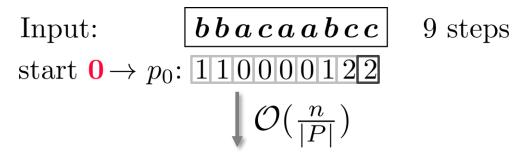
What is the start state?

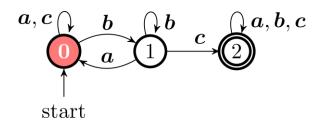
δ	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}
0	0	1	0
1	0	1	2
2	2	2	2



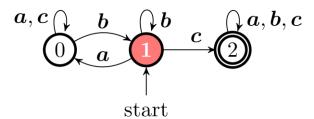


δ	\boldsymbol{a}	\boldsymbol{b}	\boldsymbol{c}
0	0	1	0
1	0	1	2
2	2	2	2



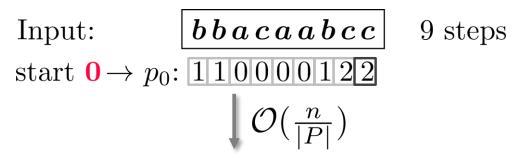


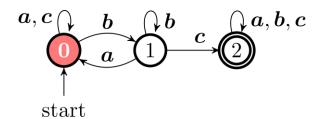
chunks:
$$c_0$$
 bba c_1 caa c_2 bcc start $0 \rightarrow p_0$: 110 p_1 : 000

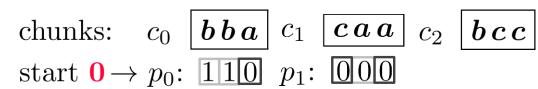


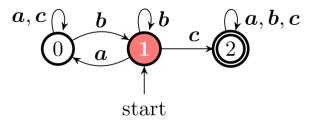
start
$$1 \rightarrow$$
 222

δ	a	\boldsymbol{b}	c
0	0	1	0
1	0	1	2
2	2	2	2







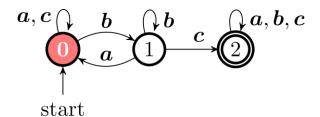


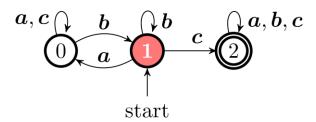
start
$$1 \rightarrow$$
 2|2|2

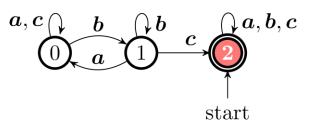


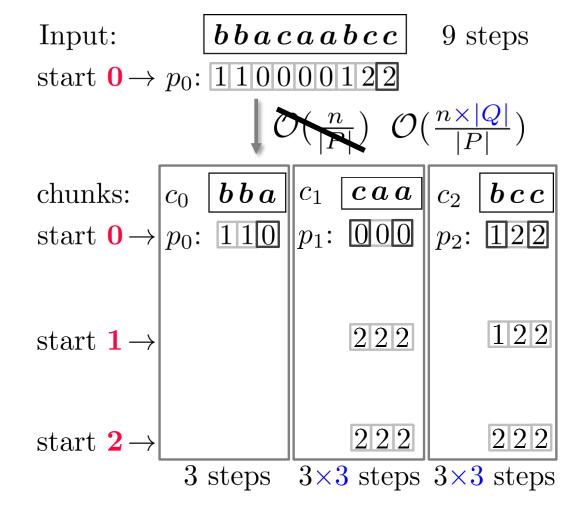
start
$$2 \rightarrow$$

δ	a	\boldsymbol{b}	c
0	0	1	0
1	0	1	2
2	2	2	2

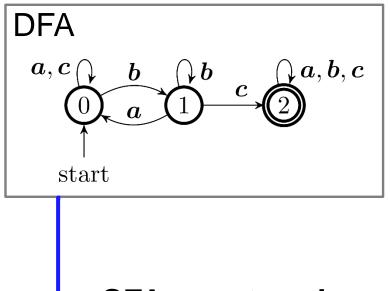




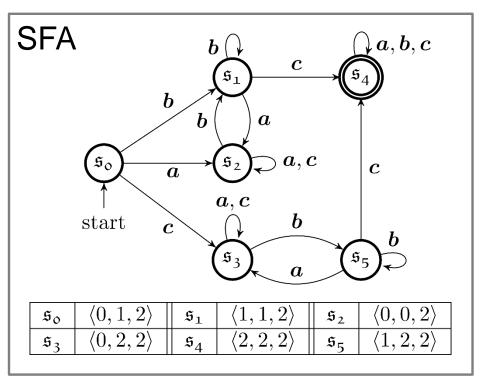




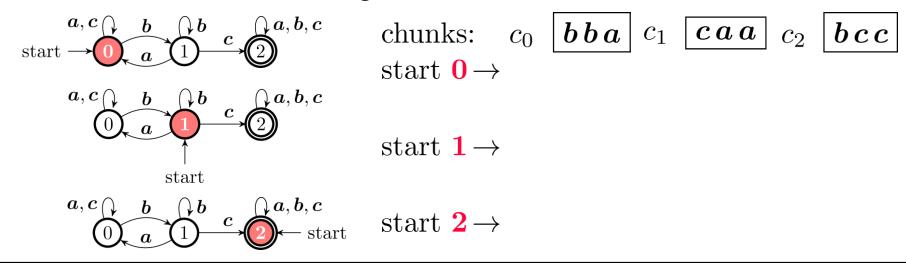
- Simultaneous Finite Automata (SFAs)
 - Accumulated state transition information
 - Simulates the parallel execution of |Q| DFAs on a single DFA

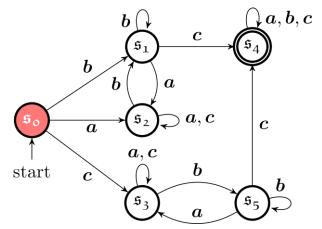


SFA construction



Parallel FA matching

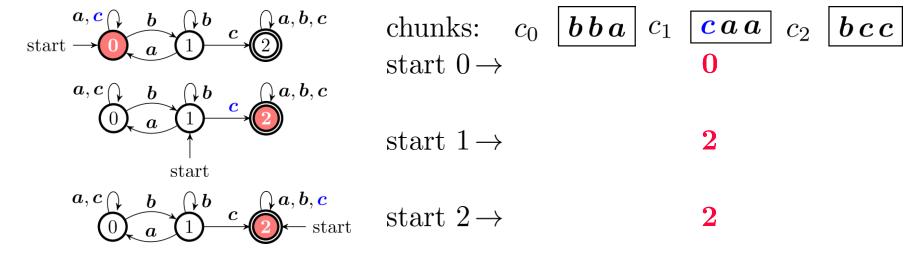


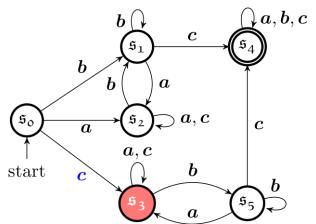


\mathfrak{s}_{0}	$\langle 0, 1, 2 \rangle$	\mathfrak{s}_1	$\langle 1, 1, 2 \rangle$	\$2	$\langle 0, 0, 2 \rangle$
\mathfrak{s}_3	$\langle 0, 2, 2 \rangle$	\mathfrak{s}_4	$\langle 2, 2, 2 \rangle$	\mathfrak{s}_5	$\langle 1, 2, 2 \rangle$

chunks:
$$c_0$$
 bba c_1 caa c_2 bcc start $\mathfrak{s}_0 \to$

Parallel FA matching

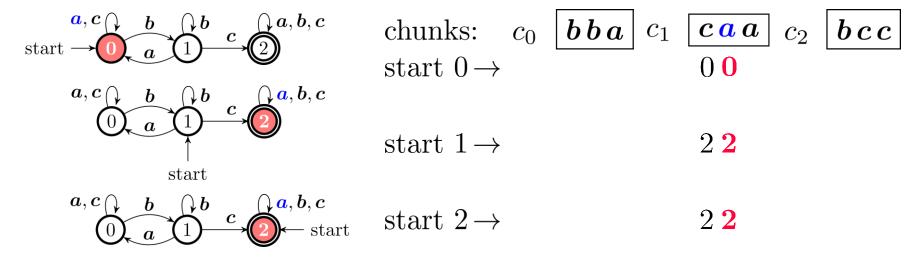


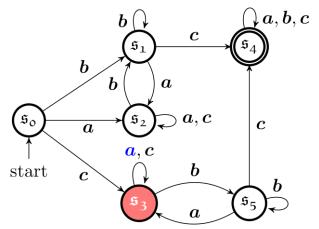


9.	$\langle 0, 1, 2 \rangle$	g,	(1 1 2)	9.	$\langle 0, 0, 2 \rangle$
\mathfrak{s}_3	$\langle 0, 2, 2 \rangle$	\mathfrak{s}_4	$\langle 2, 2, 2 \rangle$	\mathfrak{s}_5	$\langle 1, 2, 2 \rangle$

chunks:
$$c_0$$
 bba c_1 caa c_2 bcc start $\mathfrak{s}_o \to$

Parallel FA matching

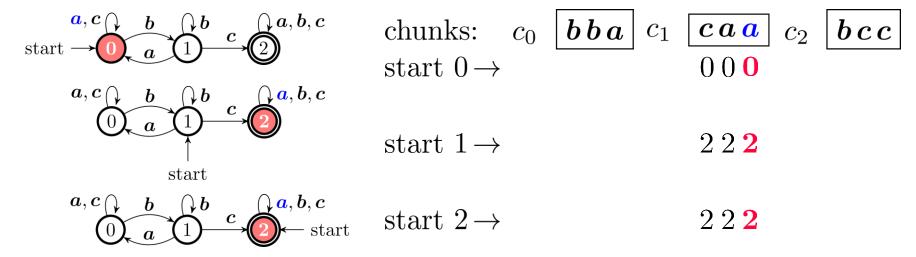


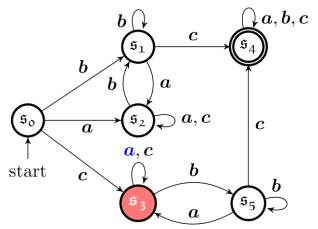


	$\langle 0, 1, 2 \rangle$				
\mathfrak{s}_3	$\langle 0, 2, 2 \rangle$	\mathfrak{s}_4	$\langle 2, 2, 2 \rangle$	\mathfrak{s}_5	$\langle 1, 2, 2 \rangle$

chunks:
$$c_0$$
 \boxed{bba} c_1 \boxed{caa} c_2 \boxed{bcc} start $\mathfrak{s}_0 \to$ $\mathfrak{s}_3 \mathfrak{s}_3$

Parallel FA matching

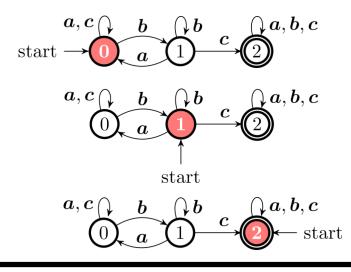


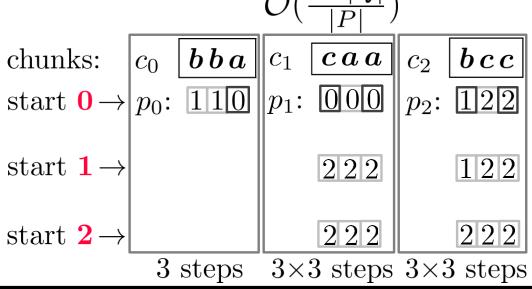


			$\langle 1, 1, 2 \rangle$		
\mathfrak{s}_3	$\langle 0, 2, 2 \rangle$	\mathfrak{s}_4	$\langle 2, 2, 2 \rangle$	\mathfrak{s}_5	$\langle 1, 2, 2 \rangle$

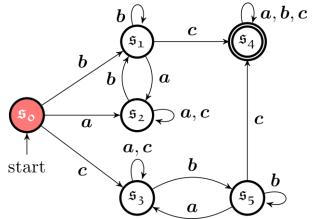
chunks:
$$c_0$$
 \boxed{bba} c_1 \boxed{caa} c_2 \boxed{bcc} start $\mathfrak{s}_o \rightarrow$ $\mathfrak{s}_3\mathfrak{s}_3\mathfrak{s}_3$

Parallel FA matching





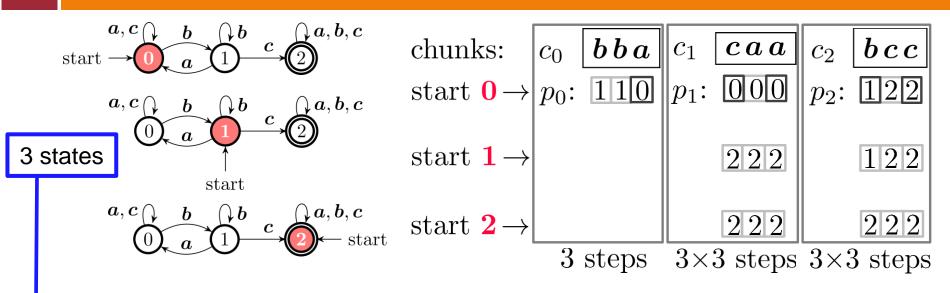
Parallel SFA matching



$$O(\frac{n}{|P|})$$

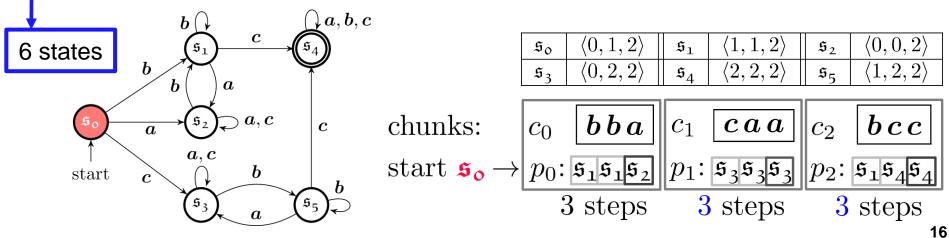
~3	(0, 2, 2)	~4	(2, 2, 2)	~5	(+, -, -,
5.	$\langle 0, 2, 2 \rangle$	5.	$\langle 2, 2, 2 \rangle$	S-	$\langle 1 \ 2 \ 2 \rangle$
$\mathfrak{s}_{\mathfrak{0}}$	$\mid \langle 0, 1, 2 \rangle \mid$	\mathfrak{s}_1	$ \langle 1, 1, 2 \rangle $	\mathfrak{s}_2	$\langle 0, 0, 2 \rangle$

chunks: c_0 bba c_1 caa c_2 bcc start $\mathfrak{s}_0 \to p_0$: $\mathfrak{s}_1\mathfrak{s}_1\mathfrak{s}_2$ p_1 : $\mathfrak{s}_3\mathfrak{s}_3\mathfrak{s}_3$ p_2 : $\mathfrak{s}_1\mathfrak{s}_4\mathfrak{s}_4$ g_4 g_4



Problem of SFA construction:

SFA size is exponential in number of FA-states $\mathcal{O}(|Q|^{|Q|})$



Our contributions

- Introduce fingerprint-based hashing of SFAstates to speed up state comparisons.
- Provide x86 SIMD-based transposition kernels for SFA-state construction to leverage data-parallelism and cache-locality.
- 3. Perform in-memory compression of SFA-states to mitigate the space constraints of large problems.
- 4. **Parallelize** SFA construction for shared-memory multicores with lock-free synchronization on all data-structures including **thread-local queues** supporting work-stealing.

```
1 Q_{\rm s} \leftarrow \emptyset, Q_{\rm tmp} \leftarrow \{\mathfrak{s}_{\rm I}\}
  2 while Q_{\rm tmp} \neq \emptyset do
                 choose and remove a SFA state \mathfrak{s} from Q_{\rm tmp}
  3
                 Q_{\rm s} \leftarrow Q_{\rm s} \cup \{\mathfrak{s}\}
                                                                                                                                             Start with the initial state \mathfrak{s}_{I}.
                 for all the \sigma \in \Sigma do
   5
                         q \in Q \mathfrak{s}_{\text{next}}(q) := \bigcup_{q' \in \mathfrak{s}(q)} \delta(q', \sigma)
   6
                         \delta_{\mathrm{s}}[\mathfrak{s},\sigma] \leftarrow \mathfrak{s}_{\mathrm{next}}
   7
                                                                                                                                                                                                            \bigcap oldsymbol{a}, oldsymbol{b}, oldsymbol{c}
                        if \mathfrak{s}_{\mathrm{next}} \notin Q_{\mathrm{s}}, Q_{\mathrm{tmp}} then
  8
                             Q_{\rm tmp} \leftarrow Q_{\rm tmp} \cup \{\mathfrak{s}_{\rm next}\} 
  9
                                                                                                                                                                DFA over \Sigma = \{ oldsymbol{b}, oldsymbol{a}, oldsymbol{c} \}
10 I_{\rm s} \leftarrow \{\mathfrak{s}_{\rm I}\}
11 F_s \leftarrow \{ \mathfrak{s} \in Q_s | \exists q \in I | \mathfrak{s}(q) \cap F \neq \emptyset \}
```

$$Q_{
m s} = \{\}$$
 $Q_{
m tmp} = \{\mathfrak{s}_{
m I}\}$


```
1 Q_{\rm s} \leftarrow \emptyset, Q_{\rm tmp} \leftarrow \{\mathfrak{s}_{\rm I}\}
  2 while Q_{\rm tmp} \neq \emptyset do
                choose and remove a SFA state \mathfrak{s} from Q_{\rm tmp}
  3
                Q_{\rm s} \leftarrow Q_{\rm s} \cup \{\mathfrak{s}\}
                                                                                                                                 Until no more states to process
                for all the \sigma \in \Sigma do
  5
                        q \in Q \mathfrak{s}_{\text{next}}(q) := \bigcup_{q' \in \mathfrak{s}(q)} \delta(q', \sigma)
   6
                        \delta_{\mathrm{s}}[\mathfrak{s},\sigma] \leftarrow \mathfrak{s}_{\mathrm{next}}
   7
                      if \mathfrak{s}_{\mathrm{next}} \notin Q_{\mathrm{s}}, Q_{\mathrm{tmp}} then
  8
                           Q_{\rm tmp} \leftarrow Q_{\rm tmp} \cup \{\mathfrak{s}_{\rm next}\}\
  9
                                                                                                                                                       DFA over \Sigma = \{ oldsymbol{b}, oldsymbol{a}, oldsymbol{c} \}
10 I_{\rm s} \leftarrow \{\mathfrak{s}_{\rm I}\}
11 F_s \leftarrow \{ \mathfrak{s} \in Q_s | \exists q \in I | \mathfrak{s}(q) \cap F \neq \emptyset \}
```

$$Q_{
m s} = \{\}$$
 $Q_{
m tmp} = \{\mathfrak{s}_{
m o}\}$

$$\mathfrak{s}_{\mathfrak{o}} \mid \langle 0, 1, 2 \rangle$$


```
1 Q_{\rm s} \leftarrow \emptyset, Q_{\rm tmp} \leftarrow \{\mathfrak{s}_{\rm I}\}
  2 while Q_{\rm tmp} \neq \emptyset do
                 choose and remove a SFA state \mathfrak{s} from Q_{\rm tmp}
                 Q_{\mathbf{s}} \leftarrow Q_{\mathbf{s}} \cup \{\mathfrak{s}\}
                 for all the \sigma \in \Sigma do
   5
                          q \in Q \mathfrak{s}_{\text{next}}(q) := \bigcup_{q' \in \mathfrak{s}(q)} \delta(q', \sigma)
   6
                         \delta_{\mathrm{s}}[\mathfrak{s},\sigma] \leftarrow \mathfrak{s}_{\mathrm{next}}
   7
                        if \mathfrak{s}_{\mathrm{next}} \notin Q_{\mathrm{s}}, Q_{\mathrm{tmp}} then
   8
                             Q_{\rm tmp} \leftarrow Q_{\rm tmp} \cup \{\mathfrak{s}_{\rm next}\}\
   9
                                                                                                                                                                   DFA over \Sigma = \{ oldsymbol{b}, oldsymbol{a}, oldsymbol{c} \}
10 I_{\rm s} \leftarrow \{\mathfrak{s}_{\rm I}\}
11 F_s \leftarrow \{ \mathfrak{s} \in Q_s | \exists q \in I | \mathfrak{s}(q) \cap F \neq \emptyset \}
```

$$Q_{
m s} = \{\}$$
 $Q_{
m tmp} = \{\mathfrak{s}_{
m o}\}$
 $\mathfrak{s} = \mathfrak{s}_{
m o}$

 $\mathfrak{s}_{\mathfrak{o}} \mid \langle 0, 1, 2 \rangle$


```
1 Q_{\rm s} \leftarrow \emptyset, Q_{\rm tmp} \leftarrow \{\mathfrak{s}_{\rm I}\}
  2 while Q_{\rm tmp} \neq \emptyset do
                choose and remove a SFA state \mathfrak{s} from Q_{\rm tmp}
   3
                                                                                                                                   Insert \mathfrak s into the processed set
                Q_{\rm s} \leftarrow Q_{\rm s} \cup \{\mathfrak{s}\}
                for all the \sigma \in \Sigma do
                        q \in Q \mathfrak{s}_{\text{next}}(q) := \bigcup_{q' \in \mathfrak{s}(q)} \delta(q', \sigma)
   6
                        \delta_{\mathrm{s}}[\mathfrak{s},\sigma] \leftarrow \mathfrak{s}_{\mathrm{next}}
   7
                      if \mathfrak{s}_{\mathrm{next}} \notin Q_{\mathrm{s}}, Q_{\mathrm{tmp}} then
  8
                            Q_{\rm tmp} \leftarrow Q_{\rm tmp} \cup \{\mathfrak{s}_{\rm next}\} 
  9
                                                                                                                                                        DFA over \Sigma = \{ oldsymbol{b}, oldsymbol{a}, oldsymbol{c} \}
10 I_{\rm s} \leftarrow \{\mathfrak{s}_{\rm I}\}
11 F_s \leftarrow \{ \mathfrak{s} \in Q_s | \exists q \in I | \mathfrak{s}(q) \cap F \neq \emptyset \}
```

$$Q_{\rm s} = \{\mathfrak{s}_{\rm o}\}$$

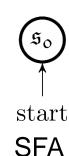
$$Q_{\rm tmp} = \{\}$$

$$\mathfrak{s}=\mathfrak{s}_{\mathfrak{0}}$$

 $\mathfrak{s}_{\mathfrak{o}} \mid \langle 0, 1, 2 \rangle$


```
1 Q_{\rm s} \leftarrow \emptyset, Q_{\rm tmp} \leftarrow \{\mathfrak{s}_{\rm I}\}
  2 while Q_{\rm tmp} \neq \emptyset do
                choose and remove a SFA state \mathfrak{s} from Q_{\rm tmp}
   3
                Q_{\rm s} \leftarrow Q_{\rm s} \cup \{\mathfrak{s}\}
                                                                                                                                          Iterate with every symbol
                for all the \sigma \in \Sigma do
                        q \in Q \mathfrak{s}_{\mathrm{next}}(q) := \bigcup_{q' \in \mathfrak{s}(q)} \delta(q', \sigma)
                        \delta_{\mathrm{s}}[\mathfrak{s},\sigma] \leftarrow \mathfrak{s}_{\mathrm{next}}
   7
                                                                                                                                                                                                   \bigcap a, b, c
                       if \mathfrak{s}_{\mathrm{next}} \notin Q_{\mathrm{s}}, Q_{\mathrm{tmp}} then
  8
                            Q_{\rm tmp} \leftarrow Q_{\rm tmp} \cup \{\mathfrak{s}_{\rm next}\} 
  9
                                                                                                                                                         DFA over \Sigma = \{ \boldsymbol{b}, \boldsymbol{a}, \boldsymbol{c} \}
10 I_{\rm s} \leftarrow \{\mathfrak{s}_{\rm I}\}
11 F_s \leftarrow \{ \mathfrak{s} \in Q_s | \exists q \in I | \mathfrak{s}(q) \cap F \neq \emptyset \}
```

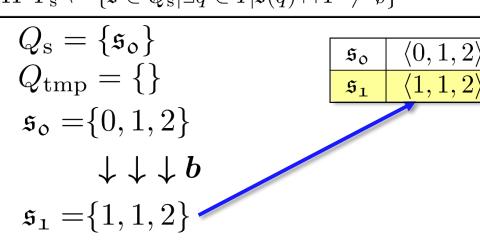
$$Q_{
m s} = \{ {f s}_{
m o} \}$$
 ${f g}_{
m o} \mid \langle 0, 1, 2
angle$ ${f g}_{
m o} \mid \langle 0, 1, 2
angle$ ${f g}_{
m o} = {f g}_{
m o}$

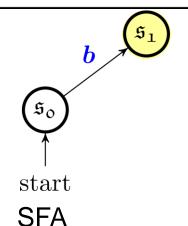


```
1 Q_{\rm s} \leftarrow \emptyset, Q_{\rm tmp} \leftarrow \{\mathfrak{s}_{\rm I}\}
  2 while Q_{\rm tmp} \neq \emptyset do
                choose and remove a SFA state \mathfrak{s} from Q_{\rm tmp}
   3
                Q_{\mathbf{s}} \leftarrow Q_{\mathbf{s}} \cup \{\mathfrak{s}\}
                                                                                                                                                     Find new states
                for all the \sigma \in \Sigma do
                        q \in Q \mathfrak{s}_{\mathrm{next}}(q) := \bigcup_{q' \in \mathfrak{s}(q)} \delta(q', \sigma)
                         \delta_{\rm s}[\mathfrak{s},\sigma] \leftarrow \mathfrak{s}_{\rm next}
                                                                                                                                                                                                    \mathbf{a}, \mathbf{b}, \mathbf{c}
                        if \mathfrak{s}_{\text{next}} \notin Q_{\text{s}}, Q_{\text{tmp}} then
  8
                            Q_{\rm tmp} \leftarrow Q_{\rm tmp} \cup \{\mathfrak{s}_{\rm next}\} 
  9
                                                                                                                                                         DFA over \Sigma = \{ \boldsymbol{b}, \boldsymbol{a}, \boldsymbol{c} \}
10 I_{\rm s} \leftarrow \{\mathfrak{s}_{\rm I}\}
11 F_s \leftarrow \{ \mathfrak{s} \in Q_s | \exists q \in I | \mathfrak{s}(q) \cap F \neq \emptyset \}
   Q_{\mathrm{s}} = \{\mathfrak{s}_{\mathfrak{o}}\}
                                                                                 50
    Q_{\rm tmp} = \{\}
            \mathfrak{s}_{0} = \{0, 1, 2\}
                                                                                                                                         start
    \mathfrak{s}_{\text{next}} = \{1, 1, 2\}
```

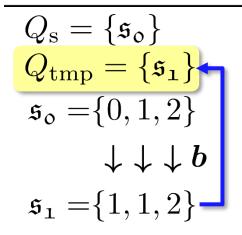
SFA

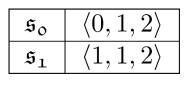
```
1 Q_{\rm s} \leftarrow \emptyset, Q_{\rm tmp} \leftarrow \{\mathfrak{s}_{\rm I}\}
  2 while Q_{\rm tmp} \neq \emptyset do
                choose and remove a SFA state \mathfrak{s} from Q_{\rm tmp}
  3
                Q_{\rm s} \leftarrow Q_{\rm s} \cup \{\mathfrak{s}\}
                                                                                                                              Update the SFA transition function
                for all the \sigma \in \Sigma do
   5
                        q \in Q \mathfrak{s}_{\text{next}}(q) := \bigcup_{q' \in \mathfrak{s}(q)} \delta(q', \sigma)
                        \delta_{\rm s}[\mathfrak{s},\sigma] \leftarrow \mathfrak{s}_{\rm next} \leftarrow
                        if \mathfrak{s}_{\mathrm{next}} \notin Q_{\mathrm{s}}, Q_{\mathrm{tmp}} then
                           Q_{\rm tmp} \leftarrow Q_{\rm tmp} \cup \{\mathfrak{s}_{\rm next}\}\
  9
                                                                                                                                                       DFA over \Sigma = \{ \boldsymbol{b}, \boldsymbol{a}, \boldsymbol{c} \}
10 I_{\rm s} \leftarrow \{\mathfrak{s}_{\rm I}\}
11 F_s \leftarrow \{ \mathfrak{s} \in Q_s | \exists q \in I | \mathfrak{s}(q) \cap F \neq \emptyset \}
```

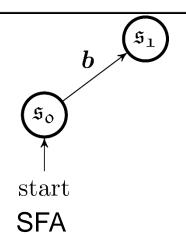




```
1 Q_{\rm s} \leftarrow \emptyset, Q_{\rm tmp} \leftarrow \{\mathfrak{s}_{\rm I}\}
  2 while Q_{\rm tmp} \neq \emptyset do
                choose and remove a SFA state \mathfrak{s} from Q_{\rm tmp}
  3
                                                                                                                                               Check existence &
                Q_{\mathbf{s}} \leftarrow Q_{\mathbf{s}} \cup \{\mathfrak{s}\}
                                                                                                                                         add new state to the set
                for all the \sigma \in \Sigma do
                                                                                                                                            (set membership test)
   5
                        q \in Q \mathfrak{s}_{\text{next}}(q) := \bigcup_{q' \in \mathfrak{s}(q)} \delta(q', \sigma)
   6
                        \delta_{\mathrm{s}}[\mathfrak{s},\sigma] \leftarrow \mathfrak{s}_{\mathrm{next}}
                                                                                                                                                                                                \bigcap oldsymbol{a}, oldsymbol{b}, oldsymbol{c}
                        if \mathfrak{s}_{\text{next}} \notin Q_{\text{s}}, Q_{\text{tmp}} then
                                Q_{\text{tmp}} \leftarrow Q_{\text{tmp}} \cup \{\mathfrak{s}_{\text{next}}\}
   9
                                                                                                                                                       DFA over \Sigma = \{oldsymbol{b}, oldsymbol{a}, oldsymbol{c}\}
10 I_{\rm s} \leftarrow \{\mathfrak{s}_{\rm I}\}
11 F_s \leftarrow \{ \mathfrak{s} \in Q_s | \exists q \in I | \mathfrak{s}(q) \cap F \neq \emptyset \}
```



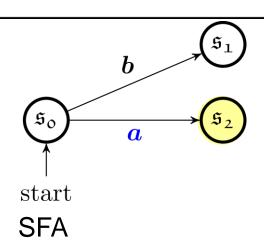




```
1 Q_{\rm s} \leftarrow \emptyset, Q_{\rm tmp} \leftarrow \{\mathfrak{s}_{\rm I}\}
  2 while Q_{\rm tmp} \neq \emptyset do
                choose and remove a SFA state \mathfrak{s} from Q_{\rm tmp}
   3
                Q_{\rm s} \leftarrow Q_{\rm s} \cup \{\mathfrak{s}\}
                                                                                                                            Generate a next state with symbol a
                for all the \sigma \in \Sigma do
                        q \in Q \mathfrak{s}_{\mathrm{next}}(q) := \bigcup_{q' \in \mathfrak{s}(q)} \delta(q', \sigma)
                        \delta_{\mathrm{s}}[\mathfrak{s},\sigma] \leftarrow \mathfrak{s}_{\mathrm{next}}
                                                                                                                                                                                                     \mathbf{a}, \mathbf{b}, \mathbf{c}
                        if \mathfrak{s}_{\text{next}} \notin Q_{\text{s}}, Q_{\text{tmp}} then
                           Q_{\rm tmp} \leftarrow Q_{\rm tmp} \cup \{\mathfrak{s}_{\rm next}\}\
  9
                                                                                                                                                          DFA over \Sigma = \{ \boldsymbol{b}, \boldsymbol{a}, \boldsymbol{c} \}
10 I_{\rm s} \leftarrow \{\mathfrak{s}_{\rm I}\}
11 F_s \leftarrow \{ \mathfrak{s} \in Q_s | \exists q \in I | \mathfrak{s}(q) \cap F \neq \emptyset \}
```

$Q_{ ext{s}} = \{\mathfrak{s}_{\mathfrak{o}}\}$	
$Q_{\mathrm{tmp}} = \{\mathfrak{s}_{\mathtt{1}}, \mathfrak{s}_{\mathtt{2}}\}$.}
$\mathfrak{s}_{\mathfrak{o}} = \{0, 1, 2\}$	
$\downarrow \downarrow \downarrow a$	
$\mathfrak{s}_2 = \{0, 0, 2\}$	IJ

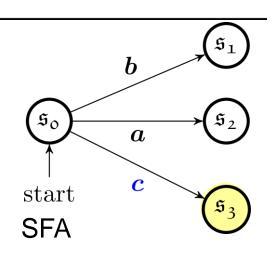
,	•
$\mid \mathfrak{s}_{\scriptscriptstyle 1} \mid \langle 1, 1, $	$ 2\rangle$
$\mathfrak{s}_2 \mid \langle 0, 0, \rangle$	$ 2\rangle$



```
1 Q_{\rm s} \leftarrow \emptyset, Q_{\rm tmp} \leftarrow \{\mathfrak{s}_{\rm I}\}
  2 while Q_{\rm tmp} \neq \emptyset do
                choose and remove a SFA state \mathfrak{s} from Q_{\rm tmp}
   3
                Q_{\mathbf{s}} \leftarrow Q_{\mathbf{s}} \cup \{\mathfrak{s}\}
                                                                                                                             Generate a next state with symbol c
                for all the \sigma \in \Sigma do
                        q \in Q \mathfrak{s}_{\mathrm{next}}(q) := \bigcup_{q' \in \mathfrak{s}(q)} \delta(q', \sigma)
                         \delta_{\mathrm{s}}[\mathfrak{s},\sigma] \leftarrow \mathfrak{s}_{\mathrm{next}}
                                                                                                                                                                                                      \mathbf{a}, \mathbf{b}, \mathbf{c}
                        if \mathfrak{s}_{\text{next}} \notin Q_{\text{s}}, Q_{\text{tmp}} then
                            Q_{\rm tmp} \leftarrow Q_{\rm tmp} \cup \{\mathfrak{s}_{\rm next}\}\
   9
                                                                                                                                                           DFA over \Sigma = \{ oldsymbol{b}, oldsymbol{a}, oldsymbol{c} \}
10 I_{\rm s} \leftarrow \{\mathfrak{s}_{\rm I}\}
11 F_s \leftarrow \{ \mathfrak{s} \in Q_s | \exists q \in I | \mathfrak{s}(q) \cap F \neq \emptyset \}
```

$Q_{ ext{s}} = \{\mathfrak{s}_{\mathfrak{o}}\}$	
$Q_{\mathrm{tmp}} = \{\mathfrak{s}_{\mathtt{1}}, \mathfrak{s}_{\mathtt{2}}, \mathfrak{s}_{\mathtt{2}}\}$	[3]
$\mathfrak{s}_{\mathfrak{o}} = \{0, 1, 2\}$	
$\downarrow \downarrow \downarrow c$	
$\mathfrak{s}_3 = \{0, 2, 2\}$	

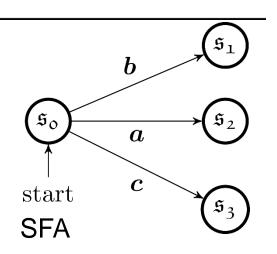
\mathfrak{s}_{0}	$\langle 0, 1, 2 \rangle$
\mathfrak{s}_1	$\langle 1, 1, 2 \rangle$
\mathfrak{s}_2	$\langle 0, 0, 2 \rangle$
\mathfrak{s}_3	$\langle 0, 2, 2 \rangle$



```
1 Q_{\rm s} \leftarrow \emptyset, Q_{\rm tmp} \leftarrow \{\mathfrak{s}_{\rm I}\}
  2 while Q_{\rm tmp} \neq \emptyset do
                 choose and remove a SFA state \mathfrak{s} from Q_{\rm tmp}
                Q_{\rm s} \leftarrow Q_{\rm s} \cup \{\mathfrak{s}\}
                for all the \sigma \in \Sigma do
                                                                                                                                       Choose the unprocessed state \mathfrak{s}_1
                         q \in Q \mathfrak{s}_{\text{next}}(q) := \bigcup_{q' \in \mathfrak{s}(q)} \delta(q', \sigma)
                         \delta_{\mathrm{s}}[\mathfrak{s},\sigma] \leftarrow \mathfrak{s}_{\mathrm{next}}
   7
                                                                                                                                                                                                        \bigcirc \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}
                        if \mathfrak{s}_{\text{next}} \notin Q_{\text{s}}, Q_{\text{tmp}} then
  8
                             Q_{\rm tmp} \leftarrow Q_{\rm tmp} \cup \{\mathfrak{s}_{\rm next}\} 
  9
                                                                                                                                                              DFA over \Sigma = \{ oldsymbol{b}, oldsymbol{a}, oldsymbol{c} \}
10 I_{\rm s} \leftarrow \{\mathfrak{s}_{\rm I}\}
11 F_s \leftarrow \{ \mathfrak{s} \in Q_s | \exists q \in I | \mathfrak{s}(q) \cap F \neq \emptyset \}
```

$$Q_{\mathrm{s}} = \{\mathfrak{s}_{\mathfrak{0}}, \mathfrak{s}_{\mathfrak{1}}\}$$
 $Q_{\mathrm{tmp}} = \{\mathfrak{s}_{\mathfrak{2}}, \mathfrak{s}_{\mathfrak{3}}\}$
 $\mathfrak{s} = \mathfrak{s}_{\mathfrak{1}}$

$\mathfrak{s}_{\mathfrak{0}}$	$\langle 0, 1, 2 \rangle$
\mathfrak{s}_1	$\langle 1, 1, 2 \rangle$
\mathfrak{s}_2	$\langle 0, 0, 2 \rangle$
\mathfrak{s}_3	$\langle 0, 2, 2 \rangle$



```
1 Q_{\rm s} \leftarrow \emptyset, Q_{\rm tmp} \leftarrow \{\mathfrak{s}_{\rm I}\}
2 while Q_{\rm tmp} \neq \emptyset do
3 | choose and remove a SFA state \mathfrak{s} from Q_{\rm tmp}
4 | Q_{\rm s} \leftarrow Q_{\rm s} \cup \{\mathfrak{s}\}
5 | forall the \sigma \in \Sigma do
6 | q \in Q | \mathfrak{s}_{\rm next}(q) := \bigcup_{q' \in \mathfrak{s}(q)} \delta(q', \sigma)
7 | \delta_{\rm s}[\mathfrak{s}, \sigma] \leftarrow \mathfrak{s}_{\rm next}
8 | if \mathfrak{s}_{\rm next} \notin Q_{\rm s}, Q_{\rm tmp} then
9 | Q_{\rm tmp} \leftarrow Q_{\rm tmp} \cup \{\mathfrak{s}_{\rm next}\}
10 I_{\rm s} \leftarrow \{\mathfrak{s}_{\rm I}\}
11 F_{\rm s} \leftarrow \{\mathfrak{s} \in Q_{\rm s} | \exists q \in I | \mathfrak{s}(q) \cap F \neq \emptyset\}

DFA over \Sigma = \{b, a, c\}
```

$$Q_{s} = \{\mathfrak{s}_{0}, \mathfrak{s}_{1}\}$$

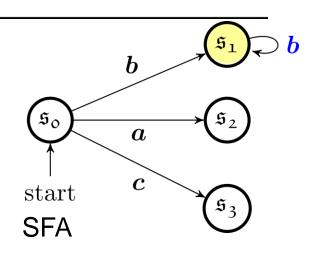
$$Q_{tmp} = \{\mathfrak{s}_{2}, \mathfrak{s}_{3}\}$$

$$\mathfrak{s}_{1} = \{1, 1, 2\}$$

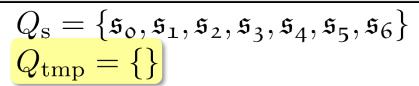
$$\downarrow \downarrow \downarrow b$$

$$\mathfrak{s}_{next} = \{1, 1, 2\}$$

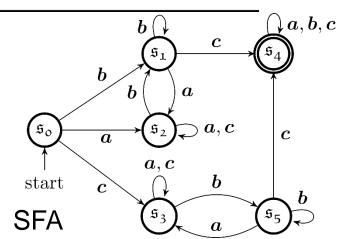
\mathfrak{s}_{0}	$\langle 0, 1, 2 \rangle$
\mathfrak{s}_1	$\langle 1, 1, 2 \rangle$
\mathfrak{s}_2	$\langle 0, 0, 2 \rangle$
\mathfrak{s}_3	$\langle 0, 2, 2 \rangle$



```
1 Q_{\rm s} \leftarrow \emptyset, Q_{\rm tmp} \leftarrow \{\mathfrak{s}_{\rm I}\}
  2 while Q_{\rm tmp} \neq \emptyset do
                 choose and remove a SFA state \mathfrak s from Q_{\mathrm{tmp}}
                Q_{\mathbf{s}} \leftarrow Q_{\mathbf{s}} \cup \{\mathfrak{s}\}
                                                                                                                                        Until no more states to process
                for all the \sigma \in \Sigma do
   5
                         q \in Q \mathfrak{s}_{\text{next}}(q) := \bigcup_{q' \in \mathfrak{s}(q)} \delta(q', \sigma)
   6
                         \delta_{\mathrm{s}}[\mathfrak{s},\sigma] \leftarrow \mathfrak{s}_{\mathrm{next}}
                                                                                                                                                                                                           igcap oldsymbol{a}, oldsymbol{b}, oldsymbol{c}
                         if \mathfrak{s}_{\text{next}} \notin Q_{\text{s}}, Q_{\text{tmp}} then
  8
                            Q_{\rm tmp} \leftarrow Q_{\rm tmp} \cup \{\mathfrak{s}_{\rm next}\}
  9
                                                                                                                                                               DFA over \Sigma = \{ \boldsymbol{b}, \boldsymbol{a}, \boldsymbol{c} \}
10 I_{\rm s} \leftarrow \{\mathfrak{s}_{\rm I}\}
11 F_s \leftarrow \{ \mathfrak{s} \in Q_s | \exists q \in I | \mathfrak{s}(q) \cap F \neq \emptyset \}
```



	$\langle 0, 1, 2 \rangle$				
\mathfrak{s}_3	$\langle 0, 2, 2 \rangle$	\mathfrak{s}_4	$\langle 2, 2, 2 \rangle$	\mathfrak{s}_5	$\langle 1, 2, 2 \rangle$

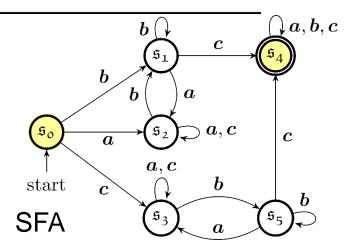


```
1 Q_{\rm s} \leftarrow \emptyset, Q_{\rm tmp} \leftarrow \{\mathfrak{s}_{\rm I}\}
  2 while Q_{\rm tmp} \neq \emptyset do
                choose and remove a SFA state \mathfrak{s} from Q_{\rm tmp}
  3
                Q_{\mathbf{s}} \leftarrow Q_{\mathbf{s}} \cup \{\mathfrak{s}\}
                                                                                                                                Set the initial and the final state
                for all the \sigma \in \Sigma do
   5
                        q \in Q \mathfrak{s}_{\text{next}}(q) := \bigcup_{q' \in \mathfrak{s}(q)} \delta(q', \sigma)
   6
                        \delta_{\mathrm{s}}[\mathfrak{s},\sigma] \leftarrow \mathfrak{s}_{\mathrm{next}}
   7
                                                                                                                                                                                                \bigcap \boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}
                       if \mathfrak{s}_{\mathrm{next}} \notin Q_{\mathrm{s}}, Q_{\mathrm{tmp}} then
   8
                           9
                                                                                                                                                       DFA over \Sigma = \{ oldsymbol{b}, oldsymbol{a}, oldsymbol{c} \}
10 I_{\rm s} \leftarrow \{\mathfrak{s}_{\rm I}\}
11 F_{\mathbf{s}} \leftarrow \{ \mathbf{s} \in Q_{\mathbf{s}} | \exists q \in I | \mathbf{s}(q) \cap F \neq \emptyset \}
```

$$Q_{s} = \{\mathfrak{s}_{0}, \mathfrak{s}_{1}, \mathfrak{s}_{2}, \mathfrak{s}_{3}, \mathfrak{s}_{4}, \mathfrak{s}_{5}, \mathfrak{s}_{6}\}$$

$$Q_{tmp} = \{\}$$

	$\langle 0, 1, 2 \rangle$				
\mathfrak{s}_3	$\langle 0, 2, 2 \rangle$	\mathfrak{s}_4	$\langle 2, 2, 2 \rangle$	\mathfrak{s}_5	$\langle 1, 2, 2 \rangle$



Optimizing SFA construction

```
1 Q_{\rm s} \leftarrow \emptyset, Q_{\rm tmp} \leftarrow \{\mathfrak{s}_{\rm I}\}
  2 while Q_{\rm tmp} \neq \emptyset do
               choose and remove a SFA state \mathfrak{s} from Q_{\rm tmp}
               Q_{\mathbf{s}} \leftarrow Q_{\mathbf{s}} \cup \{\mathfrak{s}\}\
               for all the \sigma \in \Sigma do
  5
                        q \in Q \mathfrak{s}_{\text{next}}(q) := \bigcup_{q' \in \mathfrak{s}(q)} \delta(q', \sigma)
  6
                     \delta_{\mathrm{s}}[\mathfrak{s},\sigma] \leftarrow \mathfrak{s}_{\mathrm{next}}
                 if \mathfrak{s}_{\mathrm{next}} \notin Q_{\mathrm{s}}, Q_{\mathrm{tmp}} then
                  10 I_{\rm s} \leftarrow \{\mathfrak{s}_{\rm I}\}
11 F_{\mathbf{s}} \leftarrow \{ \mathbf{s} \in Q_{\mathbf{s}} | \exists q \in I | \mathbf{s}(q) \cap F \neq \emptyset \}
```

$$\mathcal{O}\left(\sum_{i=1}^{|Q_s|}\sum_{j=1}^{|\Sigma|}(|Q|+|Q|\times i)\right) = \mathcal{O}\left(\frac{1}{2}\times|\Sigma|\times|Q|\times\underline{|Q_s|}\times(\underline{|Q_s|}+3)\right)$$
An SFA size $|Q_s|$ is $\mathcal{O}(|Q|^{|Q|})$ in the worst case

Exponential state-growth

Optimizing SFA construction

```
1 Q_{\rm s} \leftarrow \emptyset, Q_{\rm tmp} \leftarrow \{\mathfrak{s}_{\rm I}\}
  2 while Q_{\rm tmp} \neq \emptyset do
              choose and remove a SFA state \mathfrak{s} from Q_{\rm tmp}
              Q_{\mathbf{s}} \leftarrow Q_{\mathbf{s}} \cup \{\mathfrak{s}\}\
              for all the \sigma \in \Sigma do
  5
                      q \in Q \mathfrak{s}_{\text{next}}(q) := \bigcup_{q' \in \mathfrak{s}(q)} \delta(q', \sigma) \longleftarrow Parameterized transposition
  6
                    \delta_{\mathrm{s}}[\mathfrak{s},\sigma] \leftarrow \mathfrak{s}_{\mathrm{next}}
                  if \mathfrak{s}_{\text{next}} \notin Q_{\text{s}}, Q_{\text{tmp}} then \longleftarrow Fingerprint-based hashing
                9
10 I_{\rm s} \leftarrow \{\mathfrak{s}_{\rm I}\}
11 F_{\mathbf{s}} \leftarrow \{ \mathbf{s} \in Q_{\mathbf{s}} | \exists q \in I | \mathbf{s}(q) \cap F \neq \emptyset \}
```

$$\mathcal{O}\left(\sum_{i=1}^{|Q_s|}\sum_{j=1}^{|\Sigma|}(|Q|+|Q|\times i)\right) = \mathcal{O}\left(\frac{1}{2}\times|\Sigma|\times|Q|\times|Q|\times|Q|\times(|Q_s|+3)\right)$$

An SFA size $|Q_s|$ is $\mathcal{O}(|Q|^{|Q|})$ in the worst case

Exponential state-growth

Fingerprint-based hashing

- \square Fingerprints (F)
 - Short bit-strings for larger objects (SFA-states)
 - CityHash, FarmHash, Rabin's method, etc. create fingerprints
 - Speed up comparisons of SFA-states

$$\mathfrak{s}_{\mathfrak{o}} = \langle 0, 1, 2 \rangle \xrightarrow{\boldsymbol{a}} \mathfrak{s}_{\text{next}} = \langle 0, 0, 2 \rangle$$
 $\langle 0, 1, 2 \rangle \xrightarrow{\langle 0, 1, 2 \rangle} \mathfrak{s}_{\mathfrak{o}}$ $\langle 1, 1, 2 \rangle \xrightarrow{\mathfrak{s}_{\mathfrak{o}}}$

 $\mathcal{O}(|Q|)$ exhaustive SFA-state comparisons

Fingerprint-based hashing

- □ Fingerprints (F)
 - Short bit-strings for larger objects (SFA-states)
 - CityHash, FarmHash, Rabin's method, etc. create fingerprints
 - Speed up comparisons of SFA-states

$$\mathfrak{s}_{\mathfrak{o}} = \langle 0, 1, 2 \rangle \xrightarrow{\boldsymbol{a}} \mathfrak{s}_{\text{next}} = \langle 0, 0, 2 \rangle F_{\text{next}}$$

$$F_{0} \langle 0, 1, 2 \rangle \mid \mathfrak{s}_{\mathfrak{o}} \mid F_{1} \langle 1, 1, 2 \rangle \mid \mathfrak{s}_{\mathfrak{o}} \mid F_{2} \mid F_{1} \langle 1, 1, 2 \rangle \mid \mathfrak{s}_{\mathfrak{o}} \mid F_{2} \mid F$$

 $\mathcal{O}(1)$ fingerprint comparisons

Fingerprint-based hashing

- □ Fingerprints (F)
 - Short bit-strings for larger objects (SFA-states)
 - CityHash, FarmHash, Rabin's method, etc. create fingerprints
 - Speed up comparisons of SFA-states

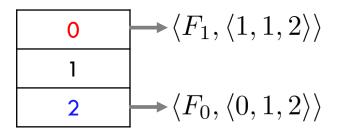
- Fingerprint-collisions
 - It follows from the properties of the hash function that if fingerprints are different, SFA-states are different.
 - No exhaustive comparison necessary.
 - With small probability, different SFA-states generate same fingerprint.
 - Fingerprint-collision
 - If fingerprints are the same, SFA-states may be the same.
 - $\longrightarrow \mathcal{O}(|Q|)$ exhaustive comparisons are required.

Fingerprint-based hashing (cont.)

Hashing of SFA-states

- Speed up lookups, reduces number of SFA-state comparisons
- □ Hash key: fingerprint % size of the hash-table
- Value: \langerprint, SFA-state \ranger

\mathfrak{s}_{0}	$F_0 = 2$	$\langle 0, 1, 2 \rangle$
\mathfrak{s}_1	$F_1 = 0$	$\langle 1, 1, 2 \rangle$



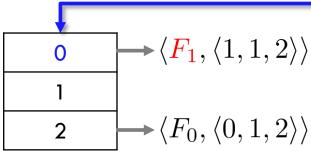
Hash-table (size=3)

Fingerprint-based hashing (cont.)

Hash-collisions

Different SFA-states may map to the same hash-key due to the modulooperation.

$\mathfrak{s}_{\mathfrak{0}}$	$F_0 = 2$ $F_1 = 0$	$ \begin{array}{ c c } \hline \langle 0,1,2 \rangle \\ \hline \langle 1,1,2 \rangle \\ \hline \end{array} $	$\mathfrak{s}_{\mathfrak{o}} = \langle 0, 1, 2 \rangle \xrightarrow{\boldsymbol{a}} \mathfrak{s}_{\mathfrak{2}} =$	$\langle 0, 0, 2 \rangle$
			Hash-collision	$F_2 = 3$



Hash-table (size=3)

Fingerprint-based hashing (cont.)

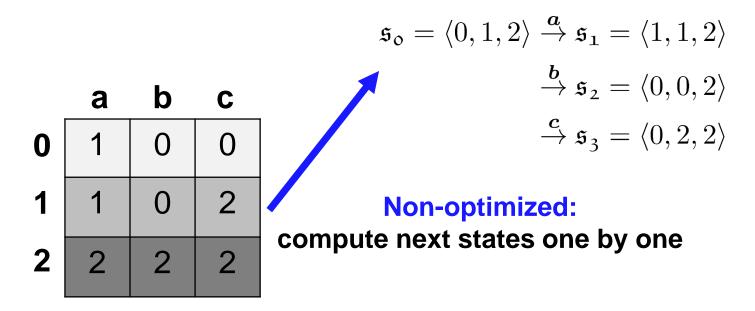
Hash-collisions

- Different SFA-states may map to the same hash-key due to the modulooperation.
- Resolved by closed addressing with chaining

Hash-table (size=3)

Parameterized transposition

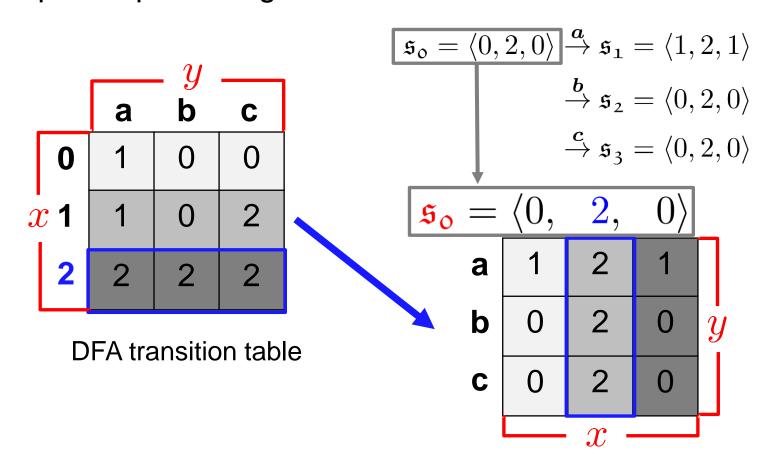
Speed up creating next SFA-states of each SFA-state



DFA transition table

Parameterized transposition

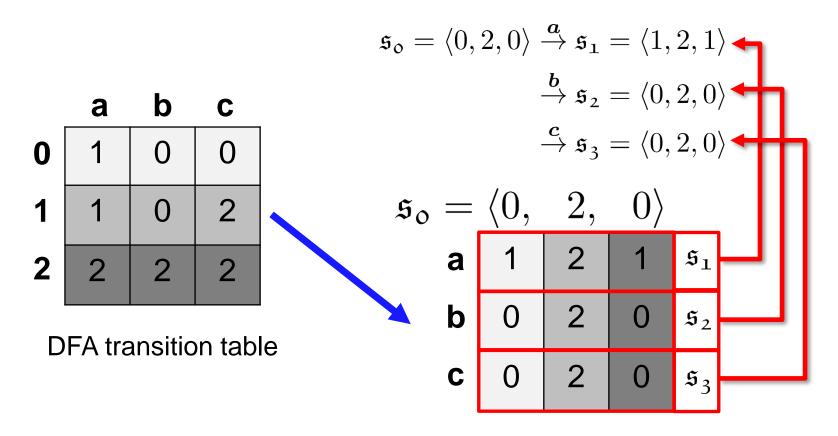
Speed up creating next SFA-states of each SFA-state



Optimized: transpose the $x \times y$ table to the $y \times x$ table according to the DFA-states of the source SFA-state

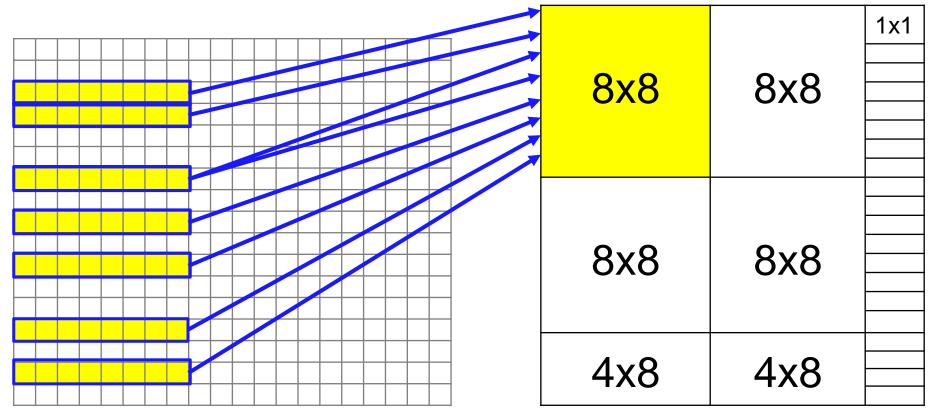
Parameterized transposition

Speed up creating next SFA-states of each SFA-state



Optimized: transpose the $x \times y$ table to the $y \times x$ table according to the DFA-states of the source SFA-state

- Example transposed transition table
 - # DFA-states: 17, # symbols: 20

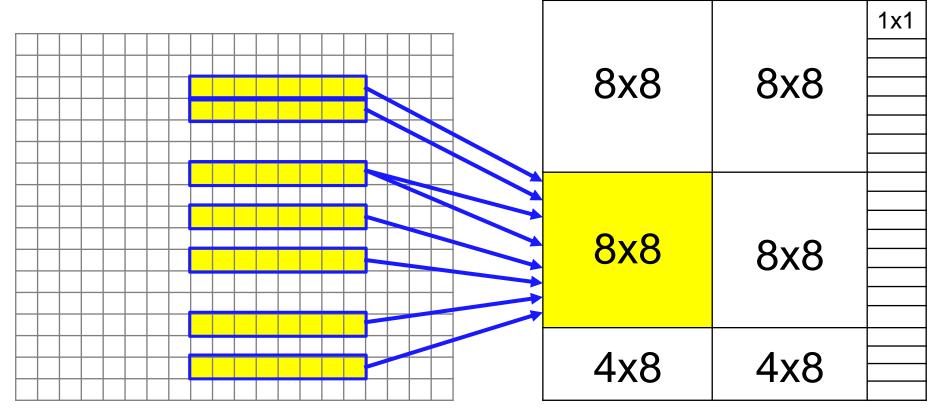


DFA transition table (17x20)

20 next SFA-states (20x17)

x86 SIMD-intrinsics-based transposition kernels

- Example transposed transition table
 - # DFA-states: 17, # symbols: 20

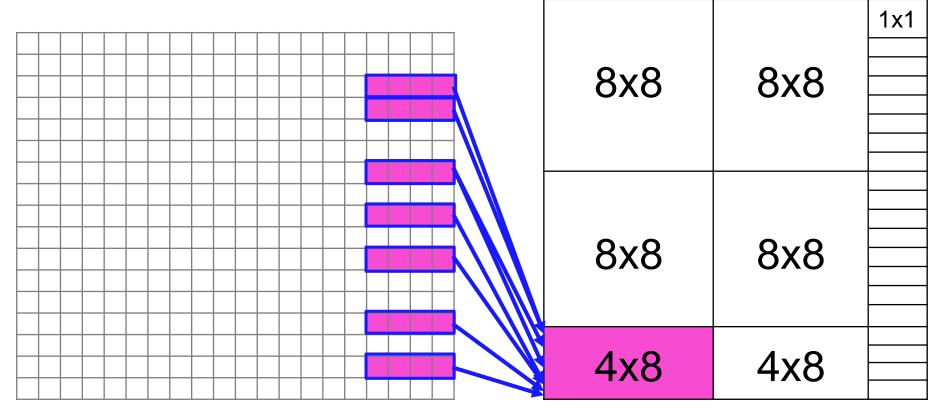


DFA transition table (17x20)

20 next SFA-states (20x17)

x86 SIMD-intrinsics-based transposition kernels

- Example transposed transition table
 - # DFA-states: 17, # symbols: 20

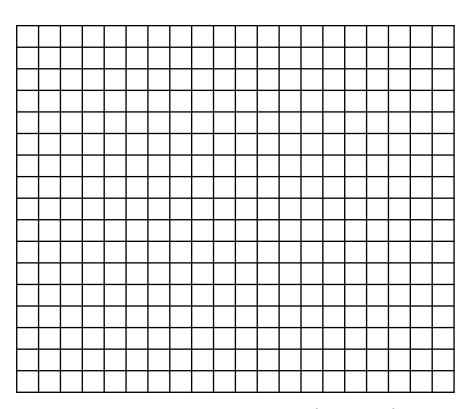


DFA transition table (17x20)

20 next SFA-states (20x17)

x86 SIMD-intrinsics-based transposition kernels

- Example transposed transition table
 - # DFA-states: 17, # symbols: 20



8x8	8x8
8x8	8x8
4x8	4x8

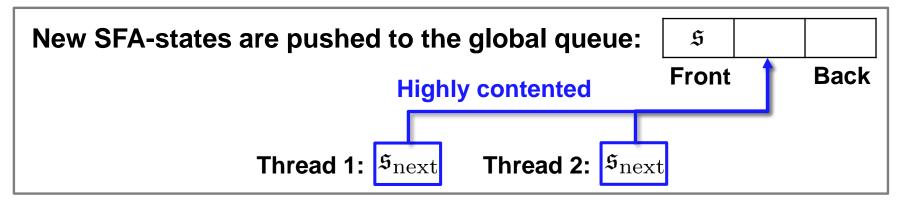
DFA transition table (17x20)

20 next SFA-states (20x17)

Work (SFA-state) distribution

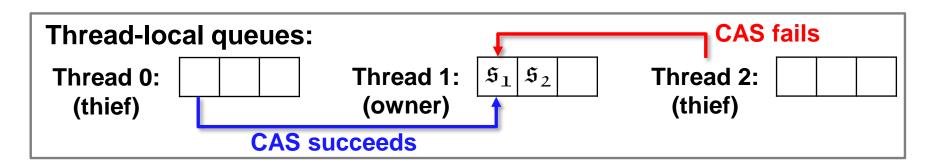
Observations:

- 1) The amount of work changes dynamically.
 - Few available states at the beginning, but soon all cores are saturated.
- Switching the work distribution scheme dynamically adapts to the changing load condition and reduces the cache-coherence overhead.
- Scheme 1: static distribution via a global queue:
 - Advantage: avoid coherence-overhead at front of the queue from workstealing attempts of idle threads
 - Back of the queue is not contended because initially little work is available.



Work (SFA-state) distribution (cont.)

- Scheme 2: dynamic distribution via thread-local queues
 - Work-stealing: steal work from the other's queue once the local queue is empty
 - Work will be popped exactly once by a thread because of lock-free synchronization using compare-and-swap (CAS) operation
 - Advantage: avoid coherence-overhead from the highly contended back of the global queue
 - Dequeuing SFA-states from other thread-local queues (work-stealing)
 makes front of the queue highly contended (cache coherence overhead)
 when little work is available



In-memory compression

SFA-state compression mitigates state explosion problem

$$\mathfrak{s}_{\text{o}} = \langle 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, \cdots, |Q|-1 \rangle$$
 27 KB per SFA-state

Compress

- Dictionary-based compression shows high compression ratios due to structural properties of FAs
 - FA-states tend to repeat in SFA-states

$$\mathfrak{s}_1 = \langle 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, \cdots, |Q| - 1 \rangle$$

- Compression requires additional costly computation
- Initiate once a critical memory threshold is reached

In-memory compression (cont.)

- Mitigate intractable problem sizes
- Conduct SFA construction in three phases
 - First phase: construct an SFA with un-compressed SFA-states

$$\mathfrak{s}_{0} = \langle 0, 1, 2 \rangle \xrightarrow{b} \mathfrak{s}_{1} = \langle 1, 1, 2 \rangle$$

$$\xrightarrow{a} \mathfrak{s}_{2} = \langle 0, 0, 2 \rangle$$

$$\xrightarrow{c} \mathfrak{s}_{3} = \langle 0, 2, 2 \rangle$$

~	/0 1 2\
$\mathfrak{s}_{\mathfrak{0}}$	$\langle 0, 1, 2 \rangle$
\mathfrak{s}_1	$ \langle 1, 1, 2 \rangle $
$\mathfrak{s}_{\scriptscriptstyle 2}$	$\langle 0, 0, 2 \rangle$
3 2	(0, 0, 2)
\mathfrak{s}_3	$\mid \langle 0, 2, 2 \rangle \mid$

In-memory compression (cont.)

- Mitigate intractable problem sizes
- Conduct SFA construction in three phases
 - First phase: construct an SFA with un-compressed SFA-states
 - Second phase: compress all generated SFA-states once a critical memory threshold is reached

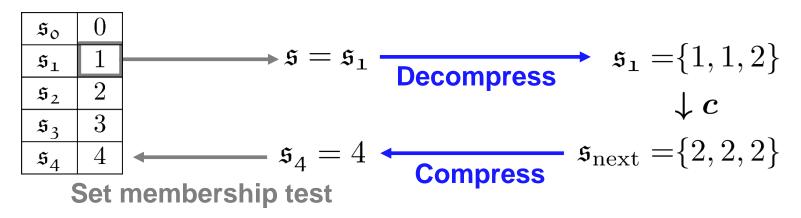
\mathfrak{s}_{0}	$\langle 0, 1, 2 \rangle$
\mathfrak{s}_1	$\langle 1, 1, 2 \rangle$
\mathfrak{s}_2	$\langle 0, 0, 2 \rangle$
\mathfrak{s}_3	$\langle 0, 2, 2 \rangle$

Dictionary-based lossless compression

\mathfrak{s}_{0}	0
\mathfrak{s}_1	1
\mathfrak{s}_2	2
\mathfrak{s}_3	3

In-memory compression (cont.)

- Mitigate intractable problem sizes
- Conduct SFA construction in three phases
 - First phase: construct an SFA with un-compressed SFA-states
 - Second phase: compress all generated SFA-states once a critical memory threshold is reached
 - Third phase: resume SFA construction with compressed SFA-states

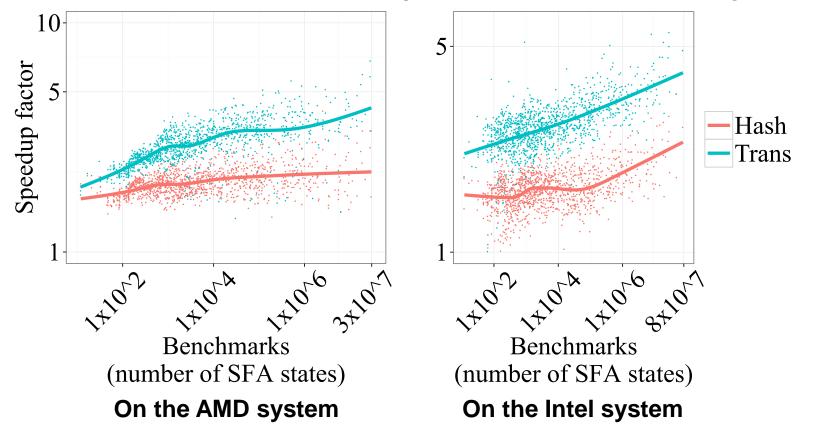


Experimental evaluation

- Benchmarks: 1250 patterns from PROSITE protein database
 - Their minimal DFAs are generated by Grail+.
 - Exclude patterns take several days to convert to minimal DFAs.
- Proposed algorithm implemented in C11 using POSIX threads.
- Performance results are obtained by PAPI allows accessing hardware performance counters.
- Evaluation platforms:
 - 4-CPU (64 cores) AMD Opteron system
 - 2-CPU (44 cores, 2 hyperthreads per core) Intel Xeon Broadwell E5-2699 v4 system
 - Linux CentOS version 7

Experimental evaluation (cont.)

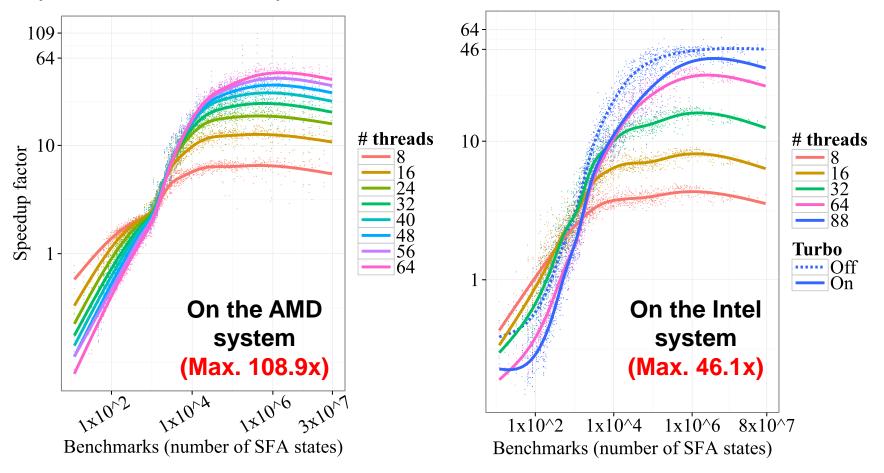
Speedups of optimized sequential algorithm over the previous algorithm



- Hashing: max 4.1x on AMD, 3.1x on Intel
- Combination of hashing and transposition: max 6.8x on AMD, 5.2x on Intel

Experimental evaluation (cont.)

- Speedups of parallelization
 - Based on our fastest sequential algorithm using hashing and parameterized transposition



Experimental evaluation (cont.)

- Performance and size comparison with and w/o compression
 - Six benchmarks on the Intel system (four benchmarks are intractable w/o compression and two benchmarks are added to compare them)
 - Set our memory manager's threshold to 200 GB to force compression of two tractable benchmarks

Number of States		w/o compr.		with compr.		Compr.
DFA	SFA	Size (MB)	Time (s)	Size (MB)	Time (s)	Ratio
2,557	74,624,878	381,632	42	12,622	1,015	30
2,980	40,956,096	244,098	28	13,172	436	19
6,132	17,795,082	436,478	n/a	$12,\!153$	824	18
6,419	20,559,280	527,880	n/a	$15,\!495$	1,212	17
6,549	47,076,417	1,233,214	n/a	29,610	2,700	21
7,025	23,975,400	673,709	n/a	20,106	1,641	17

Intractable w/o compression

Conclusion

- Introduced fingerprints and hashing to reduce state comparisons and set membership tests.
- Parameterized transposition of the transition table ensures cache locality of memory accesses.
- Dynamic switch from global work queue to thread local queues with work-stealing avoids contention of cache-lines at front and back of queue.
- Dynamically switch to in-memory compression of SFA-states once they cannot fit into the main memory.
- Overall speedups including fingerprint-based hashing, parameterized transposition and parallelization without compression are up to 312x on AMD and 193x on Intel.
- Compression ratios are up to 30 on the Intel system.

Acknowledgments

- This research was supported by:
 - the Austrian Science Fund (FWF) project I 1035N23
 - the Next-Generation Information Computing Development Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT & Future Planning under grant NRF2015M3C4A7065522

Thank you!