Lazy Parallel Kronecker Algebra-operations on Heterogeneous Multicores

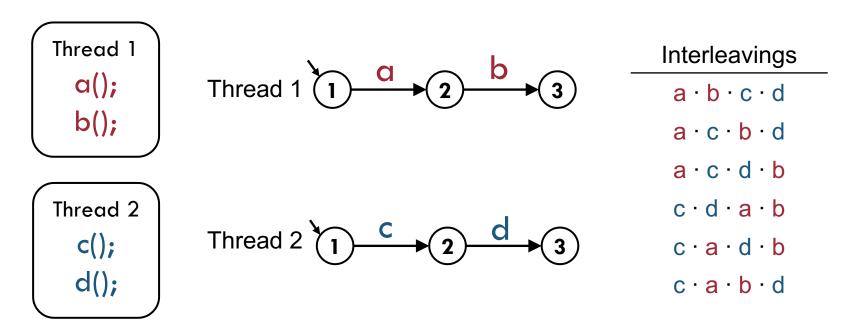
EuroPar 2017

Wasuwee Sodsong¹, Robert Mittermayr², Yoojin Park¹, Bernd Burgstaller¹ and Johann Blieberger²

¹Yonsei University, Seoul, Korea ²Vienna University of Technologies, Vienna, Austria

Motivation: Computing Thread Interleavings

- Arbitrary interleavings of threads such that...
 - the order on computation steps is taken from threads' program order

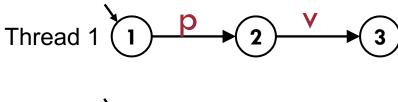


 Totality of all possible thread interleavings is well-suited for concurrent program analysis

Synchronization Primitives

- Semantics of synchronization primitives constrain possible interleavings
 - Not all interleavings are valid

Example: binary semaphore



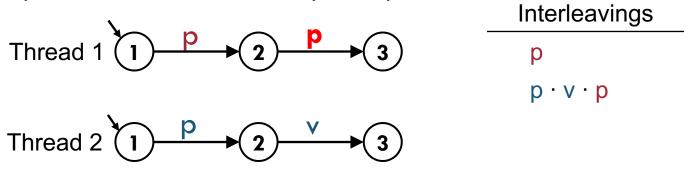
Interleavings

p · p · v · v 🗶

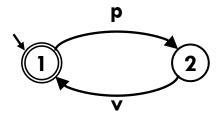
Synchronization Primitives

 Semantics of synchronization primitives allow additional interleavings that constitute deadlocks

Example: self-deadlock on binary semaphore

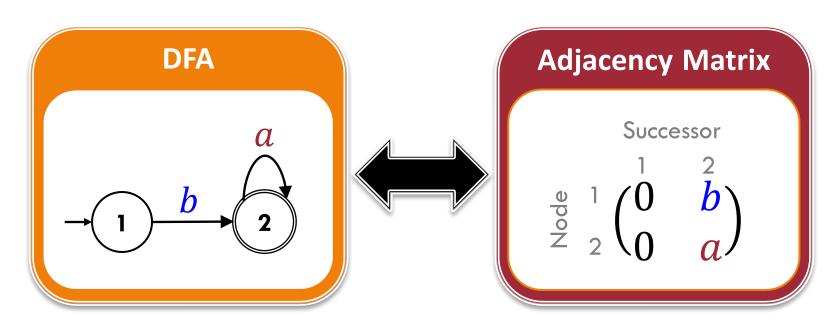


 Behavior of semaphores can be modelled by a deterministic finite automaton (DFA)



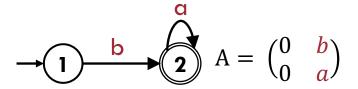
Encoding of Threads as Adjacency Matrices

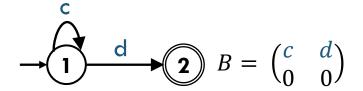
- DFA representation of a thread or a semaphore can be encoded as an adjacency matrix
 - Rows represent node IDs
 - Columns represent successor IDs



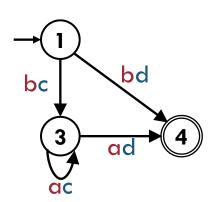
 Kronecker product: Given an m-by-n matrix A and a p-by-q matrix B,

$$A \otimes B = \begin{pmatrix} a_{1,1} \cdot B & \cdots & a_{1,n} \cdot B \\ \vdots & \ddots & \vdots \\ a_{m,1} \cdot B & \cdots & a_{m,n} \cdot B \end{pmatrix}$$



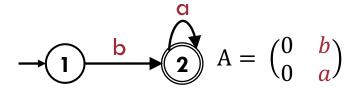


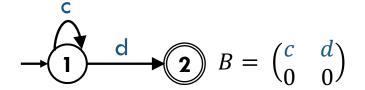
$$A \otimes B = \begin{pmatrix} 0 & 0 & bc & bd \\ 0 & 0 & 0 & 0 \\ 0 & 0 & ac & ad \\ 0 & 0 & 0 & 0 \end{pmatrix}$$



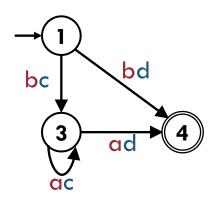
 Kronecker product: Given an m-by-n matrix A and a p-by-q matrix B,

$$A \otimes B = \begin{pmatrix} a_{1,1} \cdot B & \cdots & a_{1,n} \cdot B \\ \vdots & \ddots & \vdots \\ a_{m,1} \cdot B & \cdots & a_{m,n} \cdot B \end{pmatrix}$$



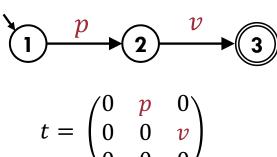


- Executed threads A and B in lock-step
- □ ⊗ can be used to synchronize threads

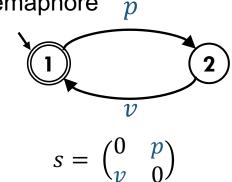


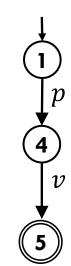
Synchronization: Lock-step Execution of Threads and Semaphores

Thread



Semaphore

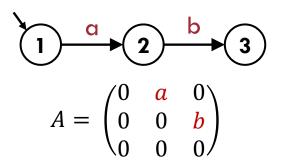


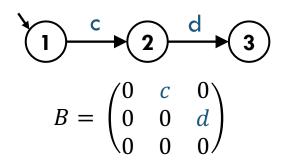


For simplicity we write $x \cdot x = x$ and $x \cdot y = 0$

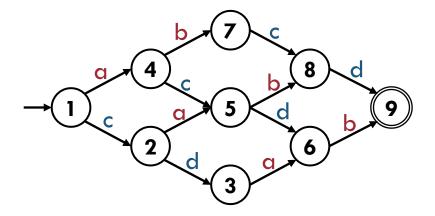
Kronecker sum: Given a square matrix A of order m and B of order n,

$$A \oplus B = A \otimes I_n + I_m \otimes B.$$



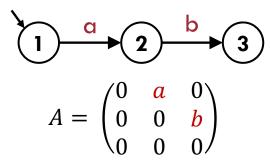


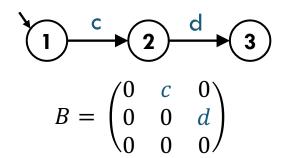
$$A \oplus B = \begin{pmatrix} 0 & c & 0 & a & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & d & 0 & a & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & a & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & c & 0 & b & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & d & 0 & b & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & b \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & d \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$



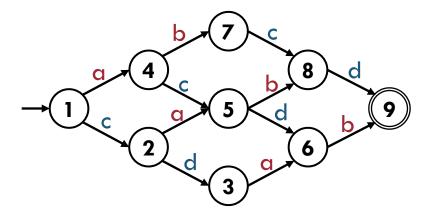
Kronecker sum: Given a square matrix A of order m and B of order n,

$$A \oplus B = A \otimes I_n + I_m \otimes B.$$





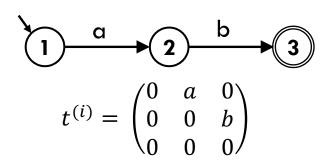
- All thread interleavings
- ⊕ can be used to model concurrency



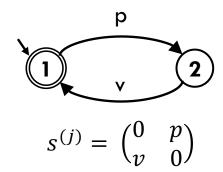
Concurrent Threads and Semaphores

 Encode threads' control flow graphs and synchronization primitives as adjacency matrices.

Control flow graph of thread t(i)



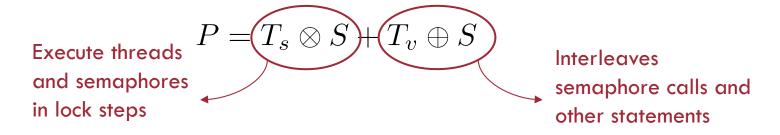
Semaphore s(j)



- $T = \bigoplus_{i=1}^k t^{(i)}$ models all interleavings of the threads
- \square $S = \bigoplus_{j=1}^r s^{(j)}$ models all interleavings of the semaphores

Synchronizing Threads and Semaphores

Behaviors of overall systems can be modelled by



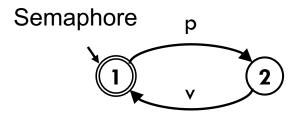
- $lue{T}_s$ contains only semaphore calls
- $lue{}$ T_v contains the other edge labels

$$T = T_s + T_v$$

Example: Overall System



Thread
$$t = \begin{pmatrix} 0 & p & p & 0 \\ 0 & 0 & 0 & p \\ 0 & 0 & 0 & v \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 Semaphore $s = \begin{pmatrix} 0 & p \\ v & 0 \end{pmatrix}$

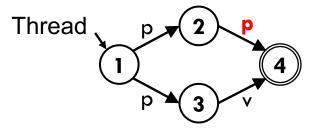


Semaphore
$$s = \begin{pmatrix} 0 & p \\ v & 0 \end{pmatrix}$$

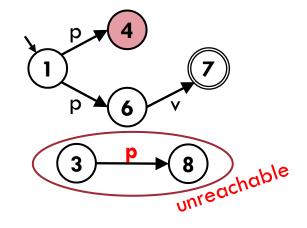
$$P = T_s \otimes S + T_v \oplus S$$

$$P = t \otimes s = \begin{pmatrix} 0 & p & p & 0 \\ 0 & 0 & 0 & p \\ 0 & 0 & 0 & v \\ 0 & 0 & 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & p \\ v & 0 \end{pmatrix} =$$

Example: Overall System



Thread
$$t = \begin{pmatrix} 0 & p & p & 0 \\ 0 & 0 & 0 & p \\ 0 & 0 & 0 & v \\ 0 & 0 & 0 & 0 \end{pmatrix}$$



$$P = t \otimes s = \begin{pmatrix} 0 & p & p & 0 \\ 0 & 0 & 0 & \mathbf{p} \\ 0 & 0 & 0 & v \end{pmatrix} \otimes \begin{pmatrix} 0 & p \\ v & 0 \end{pmatrix}$$

- Combination of Kronecker algebra operations generates all possible (arbitrary) thread interleavings subject to semantics of synchronization primitives
- The number of interleavings increases exponentially in the number of threads
 - The state explosion problem
 - But: Not all interleavings need to be computed!

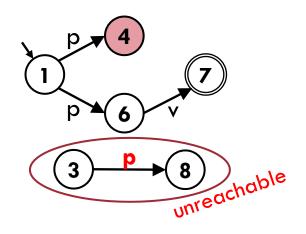
Contributions

- 1. Two-step lazy evaluation scheme
 - Construct expression tree
 - Lazily evaluate relevant thread interleavings
- Kronecker algebra operations optimized for multicore CPUs
- Execution scheme that utilizes both the multicore CPU and the GPU
 - GPU: conducts lazy evaluation.
 - CPU: maintains the computed thread interleavings and coordinate the GPU-based evaluation process
- 4. Introduce a fast operation on a special case of Kronecker sums

Lazy Evaluation

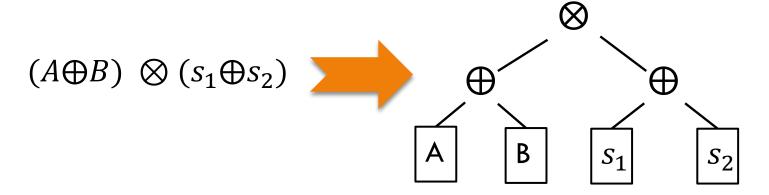
Observations

- ➤ Adjacency matrices are sparse
- > Not all nodes are reachable from the start node
- > It is not necessary to compute the entire matrix



Lazy Evaluation

- We never compute an entire matrix
 - Instead, we compute only the non-zero elements of the reachable nodes



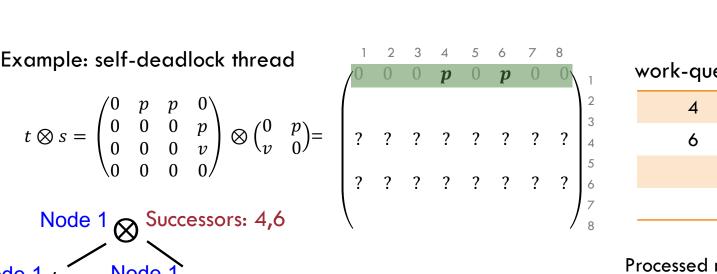
- Step 1: Construct an expression tree
 - Leaf nodes (operands) are stored as sparse matrices
 - Internal nodes (operators) are stored as lazy matrices
 - the algebra operator and pointers to the operands
 - No operator evaluation yet!

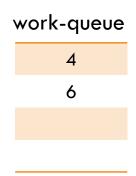
Lazy Evaluation

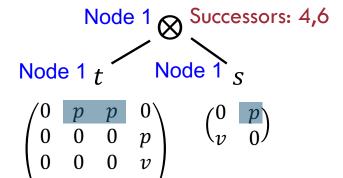
- **Step 2:** Lazily evaluate Kronecker algebra operations
 - Find successors of the start node by evaluating the expression tree
 - If a successor has not been processed before, insert it to a work-queue
 - Repeatedly process nodes from the work-queue until it is empty

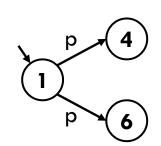
Example: self-deadlock thread

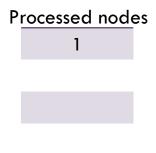
$$t \otimes s = \begin{pmatrix} 0 & p & p & 0 \\ 0 & 0 & 0 & p \\ 0 & 0 & 0 & v \\ 0 & 0 & 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & p \\ v & 0 \end{pmatrix} =$$











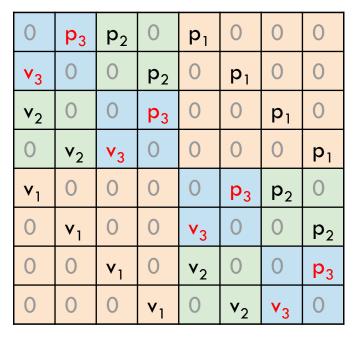
Semaphore's Kronecker Sum Optimization

- We can calculate a series of Kronecker sums of same-sized matrices in one step.
 - a node ID
 - number of Kronecker sum operations

$$s_1 =$$

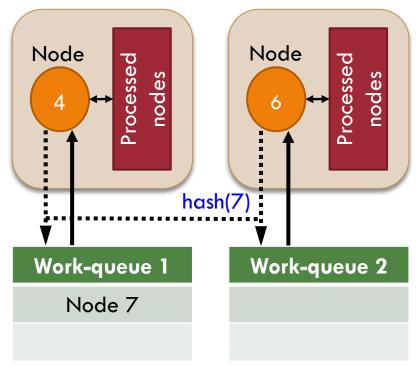
$$s_1 \oplus s_2 =$$

$$s_1 \oplus s_2 \oplus s_3 =$$



Kronecker Algebra on a Multicore CPU

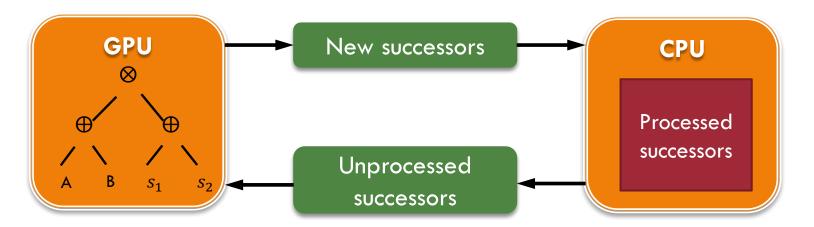
- A thread finds all successors of a given node
- Employ a hash-function which hashes the node IDs of the successors
 - The hash-function guarantees one-to-one assignment of node IDs to worker threads
- Each worker thread maintains a local hash-table of processed nodes



$$t \otimes s = \begin{pmatrix} 0 & p & p & 0 \\ 0 & 0 & 0 & p \\ 0 & 0 & 0 & v \\ 0 & 0 & 0 & 0 \end{pmatrix} \otimes \begin{pmatrix} 0 & p \\ v & 0 \end{pmatrix} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 0 & 0 & 0 & p & 0 & p & 0 & 0 \\ 0 & 0 & 0 & p & 0 & p & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{bmatrix}$$

Kronecker Algebra using a CPU+GPU

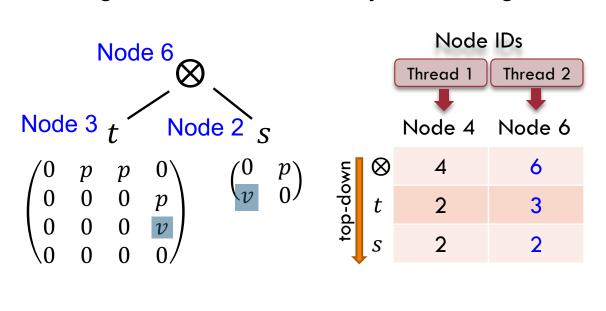
- A GPU has relatively small memory compared to a CPU
 - unable to keep the continuously growing list of processed nodes

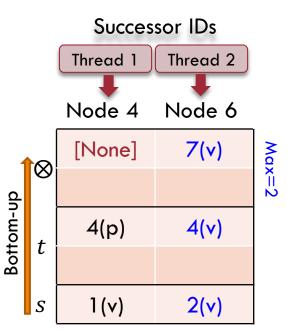


- Code-partitioning between the CPU and GPU according to the memory constraint
 - GPU lazily evaluates the Kronecker algebra operations
 - CPU maintains all computed thread interleavings

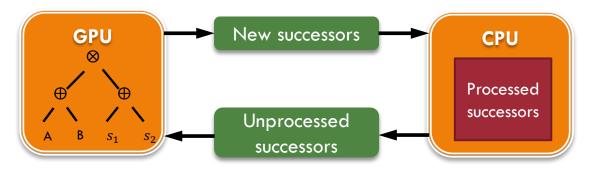
Lazy Evaluation on a GPU

- Execute lazy evaluation in 2 loops
 - 1. calculate node ID of all tree levels (top-down)
 - retrieve successors (bottom-up)
- Intermediate results are stored in buffer
 - the size is pre-calculated from max. number of possible successors
 - align to maximize memory coalescing access



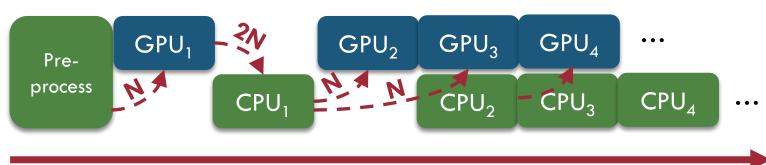


Pipelined Execution



- GPU processes N nodes per iteration and may discover > N new successors
- The first N new successors are computed in the next iteration
- The remaining successors are computed in the following iteration
- The GPU computation can overlap with the CPU computation of the previous iteration

time



Experimental Setups

Experiments:

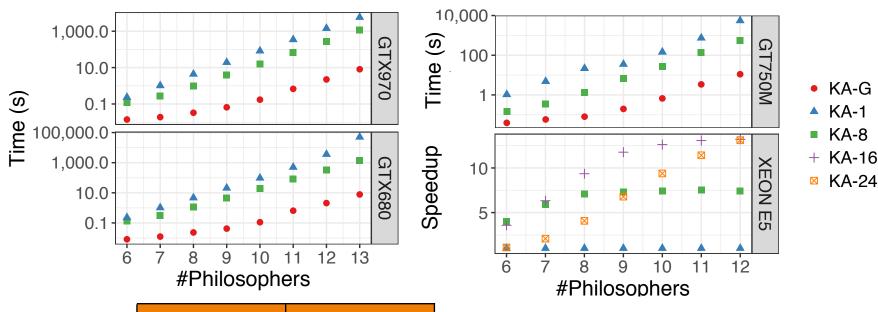
- 1. Dijkstra's Dining Philosophers
- 2. Linux kernel thread simulations
- Railway system



Hardware specifications:

Platform Name	GTX 970	GTX 680	GT 750M	Xeon E5
CPU model	Intel i7-6700	Intel i7-3770k	Intel i7-4850HQ	Xeon E5-2697
CPU frequency	3.4 GHz	3.5 GHz	2.3 GHz	1.8 GHz
GPU model	NVIDIA GTX 970	NVIDIA GTX 680	NVIDIA GT 750M	
GPU core frequency	1329 MHz	1006 MHz	822 MHz	N T / A
No. of GPU cores	1664	1536	384	N/A
Compute Capability	5.2	3.0	3.5	

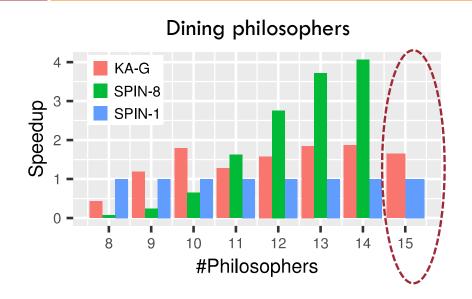
Experimental Results: CPU only vs. CPU+GPU

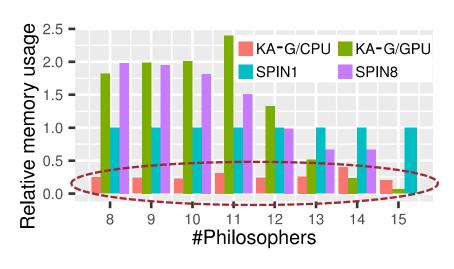


		3 kernel threads	5 kernel threads
GTX 970	KA-8	154 s	68024 s
	KA-G	0.30 s	14.64 s
CTX 680	KA-8	181 s	77107 s
	KA-G	0.29 s	14.14 s
GT 750M	KA-8	316 s	144321 s
	KA-G	0.52 s	69.10 s

- 12 Philosophers generate 1.6 million nodes
- 13 Philosophers generate 6.5 million nodes
- KA-G achieves up to 5453x
 speedup over the fastest multithreaded CPU implementation

Experimental Results: SPIN





		GTX 970	GTX 680	GT 750M
Railway	SPIN-8	1.64 s	1.68 s	2.05 s
	KA-8	4.15 s	4.89 s	5.86 s
	KA-G	0.05 s	0.05 s	0.07 s

- KA-G is faster than single-threaded SPIN
- Multi-threaded SPIN is unable to handle > 14 philosophers
- KA consumes less CPU memory
 - can handle larger problems

Conclusions

- Two-step lazy evaluation scheme to mitigate the state explosion problem
- Multicore CPU implementation
- Multicore CPU + GPU implementation
 - GPU: conducts lazy evaluation
 - CPU: maintains the computed thread interleavings
- The CPU+GPU implementation is up to 5453x faster than our multicore CPU implementation
- Consumes up to 4.8x less memory than SPIN-1 and
 8.1x less memory than SPIN-8

Thank you