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Abstract

Multi-core technology has moved concurrent programming to the forefront of computer sci-
ence. The C programming language explicitly supports concurrent programming through POSIX
threads. Threads execute in parallel and communicate via shared objects that can be locked
using synchronized access to achieve mutual exclusion. However, with concurrent programming
comes a new set of problems that can hamper the quality of the software. Deadlocks are category
from such a problem.

The Linux kernel currently deploys on many different architectures. The Linux kernel source
now has 12 million lines of code. The code of Linux kernel is mostly written in C. As of now, The
Linux kernel source-code defines 45 kernel threads. For several kernel threads, multiple threads
in sharing are executing in parallel at runtime.

The Linux kernel-level synchronization primitives are software mechanisms provided by the
operating system for the purpose of supporting kernel thread synchronization. Examples are
memory barriers, atomic operations, mutexes, spinlocks. Erroneous use of synchronization prim-
itives is difficult to detect by testing. It leads to deadlocks in the Linux kernel on multi-core
processor architectures.

This report describes a static analysis for C-code to detect deadlocks due to erroneous use of
spinlocks. The intended application is the detection of deadlocks in the Linux kernel. A major
obstacle is the sheer size of the Linux kernel source-code. We analyze the entire source code
of all 45 concurrent threads defined in the Linux kernel. The sizes of the control flow graphs
(CFGs) of the underlying kernel threads are intractable for static analysis. We thus devise a
reduction mechanism to eliminate CFG nodes which are not relevant for deadlock detection. We
define graph rewrite rules to make problem sizes tractable.

Deadlocks constitute a locking hierarchy violation. In our analysis, we show that spinlocks
which can be shown to adhere to a given locking hierarchy are irrelevant for deadlock detection.
This allows us to omit such locks and thus further reduce the problem size. Kronecker algebra
is a matrix calculus that has been proven useful for analysing multi-threaded programs. Our
analysis for deadlock detection among Linux kernel threads is based on Kronecker algebra. We
employ Kronecker algebra on the entire Linux kernel source-tree to detect deadlocks.



1 Introduction

Now we are in the explicit parallelism multi-core processor era. As a result, the computing
platform is parallel multi-core architectures. To obtain performance increase in the multi-core
processor, developers implement parallel applications instead of sequential ones. Task parallelism
is a form of parallelization of computer code across multi-core processors. Using threads are one
of solution for task parallelism. Threads execute in parallel and communicate via shared objects.
Shared objects must be locked using synchronization primitives to achieve mutual exclusion.

The C programming language is one of popular language and explicitly supports concurrent
programming through POSIX threads. Multi-core programming with POSIX threads and locks
introduces potential concurrency bugs. Deadlocks are one of potential concurrency bugs and the
hardest bug to find by a developer. As an example, it is sufficient to consider two threads which
take each other locks. Given two locks A and B, and two threads, if thread 1 takes lock A then
B while still under A, and thread 2 takes lock B then A while still under B. The deadlock occurs
if thread 1 takes lock A, then thread 2 takes lock B before thread 1 does.

Deadlocks are related with all possible thread interleavings using locks. To analyze deadlock
from concurrent programs by threads, Analysis must consider all possible thread interleavings.

Existing techniques do not scale for large code-bases. One of simple example for deadlock
analysis is Dijkstra’s Dining Philosophers which has 20 lines of code and 20 threads only. Existing
techniques show deadlock analysis using a simple example like Dining Philosophers. Real-world
source codes are bigger that example one. The number of threads in real-world source codes can
be grown exponentially.

The Linux operating system is deployed on many architectures. The Linux operating systems
are now everywhere from mobile phones to factory systems. Almost all embedded devices we
use are controlled by the Linux operating system. The Linux kernel is a major part of the Linux
operating system. The Linux kernel source now 12 million lines of code, 23 thousand functions,
45 district kernel thread functions and more thread instances. The code of Linux kernel is mostly
C. There are some debugging mechanisms that can be activated in the kernel that can detect
deadlocks at runtime. To enable these mechanisms, the kernel has to be complied in debugging
mode with watchdog functions and monitors included. They are also often not used simply
because they require recompiling the whole kernel and extra drivers are in an inconvenient. And
of course, the mechanisms only detect deadlocks that occur, not those that do not occur during
the testing 1. The deadlock is relatively easy to evoke via coding errors, because different authors
may decide to take two common spinlocks in a different order.

Programs that we want to analyze are large codebase like the Linux kernel. If We analyze
the Linux kernel, we can analyze other legacy source codes written by C.

This report makes the following contributions.

1) We model Linux kernel threads for use in the Kronecker matrix calculus. We compile
Linux kernel files using the LLVM/CLANG compiler and get intermediate representation
(IR) files from C files. LLVM-link is a tool to link IR files into one IR file. We link
generated IR files into one IR file using LLVM-link. We traverse linked IR file and find
thread functions. The static spinlocks are declared statically in the kernel source code.
We find static spinlocks as a synchronization primitive. CFGs of threads consists of basic
blocks and relation between them which models the flow of control. We generate CFGs of
all Linux kernel threads. We identify the Linux kernel threads in section same as our root
nodes on which we perform function inlining to create complete CFG of a kernel thread.

2) We define graph rewrite rules which eliminate CFG nodes (basic blocks) that are irrelevant
for deadlock detection. We link kernel IR files into one IR file. The linked IR file has 25,623

1According to E. Dijkstra’s famous quote: “Testing can only proof the presence of errors, not their absence”.
[https://en.wikiquote.org/wiki/Edsger W. Dijkstra]
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functions. We inline all procedure calls into root function and create complete CFG the
of kernel thread. Not all nodes of a CFG are relevant for deadlock detection. Shrinking
CFG is required to ensure tractable problem size. Nodes and edges of complete CFG are
shrunk by defined graph rewrite rules.

3) We provide novel technique to detect the violations of locking hierarchy base on Kronecker
algebra. The locking hierarchy is an order of semaphores depicting how threads acquire
locks for a critical section. The violation of the locking hierarchy makes a deadlock in the
system. To find existing deadlocks in the system, We find semaphores which violate the
locking hierarchy base on Kronecker algebra.

2 Background

We introduce background and basic notation required in this report. We start with introduc-
ing our semiring and continue with CFGs. We introduce Kronecker product and Kronecker sum
forms the so-called Kronecker algebra. We define both operations, properties and give examples
on matrix and automata level. We give deadlock analysis example using Kronecker algebra.

2.1 Semiring

In this section, we define our semiring. Properties and definitions of the semiring are from [16,
17].

Our semiring consists of a set of labels L which is defined by L = LV ∪ LS, where LV is
the set of non-synchronization labels, and LS is the set of labels representing synchronization
primitive calls, e.g., pi and vi are referred to the operation p and v of semaphore i. The sets LV
and LS are disjoint.

Semiring 〈L,+, ·, 0, 1〉 consists of a set of labels L, two binary operations + and ·, and two
constants 0 and 1 such that

1) 〈L,+, 0〉 is a commutative monoid,

2) 〈L, ·, 1〉 is a monoid,

3) left and right distributivity of · over +:

• ∀l1, l2, l3 ∈ L : l1 · (l2 + l3) = l1 · l2 + l1 · l3 and

• (l1 + l2) · l3 = l1 · l3 + l2 · l3 hold, and

4) constant 0 is an absorbing element concerning the semiring operation ·:
∀l ∈ L : 0 · l = l · 0 = 0.

Intuitively, our semiring is a unital ring without subtraction. For each l ∈ L the usual rules
are valid, e.g., l + 0 = 0 + l = l and 1 · l = l · 1 = l. Also we equip our semiring with the unary
operation ∗. For each l ∈ L, l∗ is defined by

• l∗ =
∑

j≥0l
j , where l0 = 1 and lj+1 = lj · l = l · lj for j ≥ 0.

2.2 Kronecker Algebra

Kronecker algebra calculus encodes finite automata as adjacency matrices. Kronecker prod-
uct and Kronecker sum are so-called Kronecker algebra. In this section, we define both opera-
tions, state properties, and give examples on matrix.
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2.2.1 Kronecker Product

Definition 1 (Kronecker Product). Given an m-by-n matrix A and a p-by-q matrix B, their
Kronecker product A⊗B is a mp-by-nq block matrix defined by

A⊗B =

a1,1 ·B · · · a1,n ·B
...

. . .
...

am,1 ·B · · · am,n ·B

 .

Kronecker product is simultaneous execution of automata A and B. The operation ⊗ can
be used to synchronize automata. In the following, we give a Kronecker product example.

Example 1. We use the following matrices A and B.

A =

(
a1,1 a1,2
a2,1 a2,2

)
and B =

b1,1 b1,2 b1,3
b2,1 b2,2 b2,3
b3,1 b3,2 b3,3

 .

The Kronecker product A⊗B is a 6 by 6 matrix defined by

A⊗B =



a1,1 · b1,1 a1,1 · b1,2 a1,1 · b1,3 a1,2 · b1,1 a1,2 · b1,2 a1,2 · b1,3
a1,1 · b2,1 a1,1 · b2,2 a1,1 · b2,3 a1,2 · b2,1 a1,2 · b2,2 a1,2 · b2,3
a1,1 · b3,1 a1,1 · b3,2 a1,1 · b3,3 a1,2 · b3,1 a1,2 · b3,2 a1,2 · b3,3
a2,1 · b1,1 a2,1 · b1,2 a2,1 · b1,3 a2,2 · b1,1 a2,2 · b1,2 a2,2 · b1,3
a2,1 · b2,1 a2,1 · b2,2 a2,1 · b2,3 a2,2 · b2,1 a2,2 · b2,2 a2,2 · b2,3
a2,1 · b3,1 a2,1 · b3,2 a2,1 · b3,3 a2,2 · b3,1 a2,2 · b3,2 a2,2 · b3,3



Example 2. In this example, we show how we calculate all possible simultaneous execution of
the two automata represented by the matrices

C =

(
a b
0 0

)
and D =

(
0 a
0 b

)
.

The corresponding automata are Figure 1(a) and 1(b). The Kronecker product C ⊗D is a 4 ×
4 matrix defined by

C ⊗D =


0 a · a 0 b · a
0 a · b 0 b · b
0 0 0 0
0 0 0 0

 .

The corresponding automaton of C ⊗D is Figure 1(c). In Figure 1(c), there are two input
automata on each edge. This means the both automata perform a single step at the same time.
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Figure 1: Simultaneous execution of Kronecker product C ⊗ D

2.2.2 Properties

In the following, we introduce basic properties of the Kronecker product. For example, Let
A, B and C be matrices. The Kronecker product distributes over the + operation [15], i.e.,

A⊗ (B + C) = A⊗B + A⊗ C,
(A + B)⊗ C = A⊗ C + B ⊗ C,

(A + B)⊗ (C + D) = A⊗ C + B ⊗ C + A⊗D + B ⊗D.

2.2.3 Kronecker Sum

Definition 2 (Kronecker Sum). Given a matrix A of order m and a matrix B of order n, their
Kronecker sum A⊕B is a matrix of order mn defined by

A⊕B = A⊗ In + Im ⊗B

where Im and In denote identity matrices of order m and n, respectively.

The Kronecker sum calculates all interleavings of two concurrently executing automata A
and B. Operation ⊕ can be used to model concurrency. In the following, we give a Kronecker
sum example.

Example 3. We show how to calculate all possible interleavings of the two automata represented
by the following matrices

A =

0 a 0
0 0 b
0 0 0

 and B =

0 c 0
0 0 d
0 0 0

 .
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The corresponding automata are Figure 2(a) and 2(b). The Kronecker sum A ⊕ B is a 9 × 9
matrix defined by
A⊗ I3 + I3 ⊗B = 0 a 0

0 0 b
0 0 0

⊗
1 0 0

0 1 0
0 0 1

+

1 0 0
0 1 0
0 0 1

⊗
0 c 0

0 0 d
0 0 0



=



0 0 0 a 0 0 0 0 0
0 0 0 0 a 0 0 0 0
0 0 0 0 0 a 0 0 0
0 0 0 0 0 0 b 0 0
0 0 0 0 0 0 0 b 0
0 0 0 0 0 0 0 0 b
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0


+



0 c 0 0 0 0 0 0 0
0 0 d 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 c 0 0 0 0
0 0 0 0 0 d 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 c 0
0 0 0 0 0 0 0 0 d
0 0 0 0 0 0 0 0 0



=



0 c 0 a 0 0 0 0 0
0 0 d 0 a 0 0 0 0
0 0 0 0 0 a 0 0 0
0 0 0 0 c 0 b 0 0
0 0 0 0 0 d 0 b 0
0 0 0 0 0 0 0 0 b
0 0 0 0 0 0 0 c 0
0 0 0 0 0 0 0 0 d
0 0 0 0 0 0 0 0 0


.

The corresponding graph is depicted in Figure 2 (c).

2.2.4 Example: Deadlock Analysis using Kronecker Algebra

We use a Dijkstra’s Dining Philosophers problem with two threads and two semaphores.
To illustrate Kronecker algebra-based deadlock analysis, we assume that thread T1 acquires
semaphore S1 then semaphore S2 while still holding semaphore S1, and thread T2 acquires
semaphore S2 then semaphore S1 while still holding semaphore S2. The deadlock occurs if
thread T1 acquires semaphore S1, then thread T2 acquires semaphore S2 before thread T1 does.
Figure 3 (a) and (b) contain the CFGs of threads T1 and T2. Figure 3 (c) and (d) contain the
CFGs of semaphore S1 and S2. Semaphores are used in T1 and T2.

In the following, we show how to analyze deadlock using Kronecker product and Kronecker
sum in this example.

Example 4. We model CFGs of T1, T2, S1 and S2 depicted in Figure 3 as follows.

T1 =


0 p1 0 0
0 0 p2 0
0 p1 0 v1
v2 0 0 0

 and T2 =


0 p2 0 0
0 0 p1 0
0 p1 0 v2
v1 0 0 0


S1 =

(
0 p1
v1 0

)
and S2 =

(
0 p2
v2 0

)

Let Ti for i = 1, ..., n be concurrently executing threads and Sj for j = 1, ..., k be semaphores.
Then the example consisting of threads Ti(i = 1, ..., n) and semaphores Sj(j = 1, ..., k) can be
modeled by
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Figure 2: All interleavings of Kronecker sum A ⊕ B

n⊕
i=1

Ti ⊗
k⊕

j=1
Sj = (T1 ⊕ T2)⊗ (S1 ⊕ S2).

The corresponding concurrent program graph (CPG) of two Dining Philosophers is Figure 4.
Clearly, Node 24 cannot reach to Node 1 which is the final node. Thus, the deadlock is detected.
The deadlock occurs if philosopher 1 picks up fork 1 and before he picks up fork 2, philosopher
2 picks up it. There is a second way for the deadlock to occur if philosopher 2 picks up fork 2
and before he picks up fork 1, philosopher 1 picks up it.

2.2.5 Skeleton of CFG for Kronecker Algebra.

CFG includes all inputs and nodes of a program. However, Not all inputs and nodes are
used for Kronecker algebra analysis in CFG. We eliminate additional inputs and nodes in CFG.

The steps to eliminate additional inputs and nodes in CFG depicted in Figure 5. We define
graph rewrite rules to eliminate CFG nodes that are irrelevant for deadlock detection in this
report and reduce CFG nodes in “Liner probing” step. “Liner probing” step creates probed
CFG as an input and makes CFG size tractable for “Quadratic probing”. The skeleton CFG
contains the inputs and nodes needed for Kronecker algebra calculus only. The skeleton CFG is
the result of “Quadratic probing” step.

We eliminate additional inputs and nodes in “Quadratic probing” as follows. The first step
to eliminating additional inputs from CFG is to replace the corresponding edge labels with “1”.
See Figure 6 (a). The additional input “y”. It is replaced to “1” and depicted in Figure 6 (b).
The next step is to eliminate the “1” edges and follows below algorithm.

1) If there are no “1”-edges, the algorithm terminates, otherwise go to 2.

2) Remove all “1”-self-loop. If there are no more “1”-edges, the algorithm terminates, other-
wise go to 3.
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Figure 3: Example: Dining Philosophers with two threads and semaphores
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Figure 4: CPG of the two Dining Philosophers example

CFG Skeleton CFG
Liner probing Quadratic probing

Probed CFG

Figure 5: CFG reduction steps

3) Pick a node n with at least one outgoing “1”-edge, (n → m). Let Pred(n) denote the set
of all predecessors of n. For all edges from a node p ∈ Pred(n) to n, add an edge (p→ m).
Remove the “1”-edge (n→ m). Do this for all “1”-edges rooted at node n. Finally, go to
1. Do this for all “1”-edges rooted at node n. Finally, go to 1.

The result of algorithm about Figure 6 (b) is depicted in Figure 6 (c).
We simulate user scenario depicted in Figure 7 (a) and file usage system depicted in Figure 7

(b). User scenario in Figure 7 (a) contains the “c”, “o” and “r” as the inputs. Compare to user
scenario Figure 7 (a), file usage system Figure 7 (b) contains “a”, “b”, “d”, “e”, “f”, “g”, “h”
and “i” as additional inputs. After applying above algorithm to Figure 7 (b), we get the result
CFG depicted in Figure 8. The final step is that all nodes from which no final node can be
reached are deleted from Figure 8. Figure 9 is the result of the final step and skeleton CFG of
Figure 7 (b). The additional inputs “a”, “b”, “d”, “e”, “f”, “g”, “h” and “i” and Nodes “1”,
“3”, “4”, “5”, “7” and “9” are eliminated from Figure 7 (b).
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2.3 Control-flow Graphs

Modelling software systems can be done with finite state machines (FSMs). FSMs consist
of a finite number of states. States in FSMs are changed from one state to another when a
condition is changed.

CFG consists of basic blocks and of a relation between them which models the flow of control.
Basic blocks in CFG are a finite number of states. Basic blocks in CFGs are changed from one
basic block to another according to a flow of control in a program. CFGs are used as FSMs to
model software systems.

We represent threads and synchronization primitives in the form of CFGs. CFG is a directed
labeled graph defined by G = < V,E, ne, Vf >, where V is a set of nodes, edge E ⊆ V x V , ne

is an entry node and Vf ⊆ V is a set of final nodes.
The CFG nodes represent basic blocks. The edges represent the transfer of control between

the basic blocks. Each edge e ∈ E is assigned to basic blocks. Figure 10 is one of function in
Linux kernel named “usblog flush”.

3 Related Work

3.1 Kronecker Algebra

The most closely related work is [8]. It worked on the static analysis of Ada programs with
protected objects. The plain Kronecker product is used to simulate the execution of concurrent
threads with automata. The plain Kronecker sum is used to model all interleavings of concurrent
threads with automata. Ada protected objects are modeled as CFGs. We use same definitions
of Kronecker algebra as proposed from [8]. We extend the Kronecker algebra to check locking
hierarchy and find deadlocks in multi threads. Our approach is capable of analyzing huge
programs efficiently.

Another closet work was done by [7]. It worked on generating reachability sets in composed
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Figure 8: Result CFG of eliminating additional inputs in file usage system

automata. However, it differs from our work as follows. It used boolean matrices. Our matrices
are labels from a semiring.

Different approaches are data flow analysis by [4], [5], [23], [14] and symbolic analysis [6].
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Figure 9: Skeleton CFG of file usage system

3.2 Control-flow Graph Reduction

Graph reduction and splitting approach are presented from [13]. Node splitting is the method
to make irreducible graph reducible. From [11], normalization is proposal to make irreducible
graph reducible in the front-end of a compiler.

3.3 Deadlock Analysis

We divide deadlock detection techniques into two categories as static and dynamic. A static
technique examines the text of a program without executing it. A dynamic technique detects
deadlocks at run-time. Static techniques are presented from [8]. Procedures of a program are
modeled as CFGs. All possible thread interleavings are simulated by Kronecker algebra. The
approach from [12] focus on dynamic techniques for deadlock detection. Static deadlock analyzer
finds deadlock candidates including false positives and false negatives. The starting point for
deadlock detection is deadlock candidates provided by a static analyzer. Deadlock candidates
are monitored and reported to analyzer when a deadlock occurs.

3.4 Static Analysis of Barriers

Barriers are employed in various parallel programming models from [18], [19] and [20]. In
the following, we compare some of the work done in these areas to our work. From [1], the
same number of barriers are executed in all threads to ensure the structural correctness. Static
analysis is used to determine that same number of barriers are executed in all threads.

From [3], [25], the focus is that which portions of the program execute in parallel without
verification of the correctness of barrier synchronization.

To larger set of barrier scenarios, the barrier matching is introduced by [24], [1]. It allows
to prove the correctness of a larger set of barrier scenarios.

From [10], static and dynamic barriers are verified on the fork and join programs. From [2],
several barrier scenarios are introduced and verified.

3.5 Modeling Concurrent Programs

To model concurrent programs, [21] and [22] are used widely. They model the whole systems
instead of individual threads. Petri nets are constructed from scratch and cannot be generated
from source code efficiently. To indicate a certain state, Petri nets use markings which define all
possible states. In contrast Kronecker algebra models concurrent systems with the more and less
independent components, namely threads and synchronization primitives, using CFGs. CFGs
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entry:
%1 = load i32* opt dtvlogd !dbg
%tobool = icmp ne i32 !dbg !3868
label %if.end4, %if.then1 !dbg

if.end4:
%rlock.i = %struct.raw spinlock* !dbg
semaphore lock %struct.raw spinlock*
%4 = load i32* dlogbuf start

T F

if.then7:
%6 = load dlogbuf start,!dbg
%and8 = and %6, 262143, !dbg
%sub = sub i32 %and8, !dbg
br label %if.end12, !dbg 85

if.else:
%7 = load dlogbuf end,!dbg
%and9 = and i32 %7, !dbg
%8 = load dlogbuf start
br label %if.end12

if.end22:
%rlock.i24 = %struct.raw spinlock*, !dbg
semaphore unlock %struct.raw spinlock*
call @usblog write (i8*)
br label %return, !dbg !3913

return:
ret void, !dbg !3914

Figure 10: CFG of “usblog flush” function in the Linux kernel
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are frequently used for data structures, and Kronecker algebra is used to construct a global
system view in a fully automated way.

4 Modeling Linux Kernel Threads for the Kronecker Matrix
Calculus

In the Linux kernel, The “kthread create on node” and “kernel thread” functions are used to
create kernel threads. The arguments of these functions are the thread name and the thread
function. We use these functions to identify Linux kernel threads in the kernel source code as
follows.

Clang is a compiler for C-code and generates intermediate representation (IR) files from C
files. We compile the Linux kernel files using the Clang and link generated IR files to one IR
file. We traverse the linked IR files and find 45 thread functions. These 45 functions are root
nodes in the call graph of Linux kernel functions.

Linux kernel uses the macro definition to declare synchronization primitives. We add the
annotation to macro definition by Clang compiler and find synchronization primitives.

To generate a finite automaton of kernel threads, we use CFG. We model Linux kernel threads
in the kernel source code as follows.

4.1 Building Linux Kernel C Files.

We use Kronecker algebra to find deadlock in the Linux kernel threads. Kronecker algebra
requires a finite automaton for each kernel thread. We use CFG to generate a finite automaton
of the kernel thread. CFG is a directed and labeled graph with entry node and set of final nodes.
A basic block is a single-entry and single-exit sequence of statements. Edges represent the flows
of basic blocks in the program.

LLVM IR contains CFG information. We compile the Linux kernel C files by Clang compiler
and get 1,305 IR files as follows.

4.1.1 Build-script for the LLVM compiler

The GNU Compiler Collection (GCC) is the compiler used with Linux kernel. GCC compiles
Linux kernel C files and generate object files with building configurations. Linux kernel has the
building configurations for GCC already.

To generate LLVM IR files of Linux kernel C files, we run GCC and Clang compiler at the
same time. GCC compiles all C files in Linux kernel and passes the building configurations to
Clang compiler.

GCC uses compile options for Linux kernel in building configuration. Examples are “-Os”,
“-mcpu” and “-mfpu”. Not all compile options of GCC are supported by Clang compiler.
Unsupported compile options by Clang compiler make errors of compilation. To avoid compile
error of Clang compiler by compile options supported by GCC only, we use the script. The script
collects compile options for Clang compiler from GCC compile options. The script is depicted
in Listing 1. All compile options passed by GCC are stored to variable “GCC CONFIGS”.
The function “Is support by Clang” returns “true” if variable “option” is supported by Clang
compiler. Unless returns “false”. The variable “cfile” has the name of C file for compilation. All
supported compile options by Clang compiler are collected to variable “Clang options”. Clang
compiler compiles Linux kernel C file with variable “Clang options” and generates LLVM IR
files.

Listing 1: Build-Script for the LLVM compiler

1 GCCCONFIGS = arges [@]
2 for ( i =0; i<$GCC CONFIGS; i ++); do
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3 option=${ args [ $ i ]}
4 i f [ Is support by Clang ( option ) ]
5 then
6 Clang options+=” $opt ion ”
7 clang $Clang opt ions $ c f i l e

4.2 Synchronization Primitives in the Linux Kernel for Deadlock Analysis

Kernel level synchronization primitives are software mechanisms provided by the operating
system for the purpose of supporting kernel thread synchronization. Examples are memory
barriers, atomic operations and spinlocks.

Static spinlocks are declared statically in the kernel source code. See Listing 2 for a statically
declared spinlock. Linux kernel uses the macro “DEFINE SPINLOCK” to initialize the spinlock
variable. The “static” keyword makes the variable local to the containing file. Accessing the
static spinlock from outside is only possible via the functions declared in the file. A static
spinlock uses a static variable as a locking variable. All concurrent threads access static memory
to acquire this locking variable. Kernel threads share static spinlocks to avoid race conditions.
We use static spinlocks as a synchronization primitive for deadlock analysis in Linux kernel.

Listing 2: Statically declared “my lock” variable as spinlock in Linux kernel.

1 #define DEFINE SPINLOCK( x ) s p i n l o c k t x = SPIN LOCK UNLOCKED( x )

2 stat ic DEFINE SPINLOCK(my lock ) ;

3 int my kerne l func ( void )

4 {
5 s p i n l o c k (&my lock ) ;

6 {
7 //critical section

8 }
9 sp in un lock (&my lock ) ;

10 return 0 ;

11 }

4.3 Adding Annotations to Synchronization Primitives

To find static spinlocks in LLVM IR file, we use annotations. An annotation is a form
of metadata by Clang compiler. “ attribute ” is the function in Clang compiler to annotate
following string with “annotate” into a variable or function as a property during compilation. See
Listing 3. We add annotation string “spinlock annotation” to the macro of spinlock definition.

Listing 3: Adding annotation to spinlock macro

1 #define DEFINE SPINLOCK( x ) \
2 attribute ( ( annotate ( ‘ ‘ spinlock annotation ’ ’ ) ) ) \
3 s p i n l o c k t x = SPIN LOCK UNLOCKED( x )

We compile Linux C source codes and generate LLVM IR file included annotation. Figure 11
(a) is the declaration of static spinlock variable “plock” and source code of function “cal” which
uses the “plock”. Figure 11 (b) is the LLVM IR of compiled static spinlock variable “plock” and
function “cal”. Compiled LLVM IR has annotation “spinlock annotation” for “plock” variable
as a property.

14



1 stat ic \
2 DEFINE SPINLOCK( plock ) ;
3

4 int c a l ( struct m ∗pt )
5 {
6 s p i n l o c k ( plock ) ;
7 add(&pt−> l i s t , head ) ;
8 sp in un lock ( plock ) ;
9 return 0 ;

10 }

(a) Source codes of static spinlock “plock”

@.str35 = “spinlock annotation\00”
@llvm.global.annotations = @plock
define int @cal (%struct.pt* %m) #0
{
store %struct.spinlock @plock,%lock.addr.i;
call void @spin lock(%lock.addr.i);
call @add(...);
call void @spin unlock(%lock.addr.i);
return 0;
};

(b) Compiled “plock” variable in LLVM IR

Figure 11: Annotation “spinlock annotation” is added to “plock” in LLVM IR file

4.4 Stand-alone C++ Tool that Uses the LLVM Pass

To create CFGs of Linux kernel threads, we use stand-alone C++ tool. We get statements of
the program from the interface of “ModulePass” in the stand-alone tool. See Listing 4. “main”
function is executed and get LLVM IR file name as an argument. The “getFileOrSTDIN” is the
function to save LLVM IR contents into a memory buffer. The “parseBitcodeFile” parses LLVM
IR and returns all statements of LLVM IR. The “for” loops iterate functions, basic blocks and
instructions to get information of CFG.

Listing 4: Stand-alone C++ tool

1 void main ( int argc , char∗argv [ ] ) {
2 MemoryBuffer Buf f e r = getFileOrSTDIN ( argv [ 1 ] ) ;

3

4 Module∗ M = parseBitcodeFile \
5 ( Buf f e r . get ()−>getMemBufferRef ( ) , context ) ;

6

7 I n t e r a t o r F , bb , i n s t ;

8 for (F = M−>begin ( ) , E = M−>end ( ) ; F != E; ++F)

9 {
10 // Get f u n c t i o n in format ion

11 for (bb = F−>begin ( ) , E = F−>end ( ) ; bb != E; ++bb)

12 {
13 // Get b a s i c b l o c k in format ion

14 for ( i n s t = bb−>begin ( ) , E = bb−>end ( ) ; i n s t != E; ++i n s t )

15 {
16 //Get i n s t r u c t i o n in formato in

17 }
18 }
19 }
20 }

4.5 Create Control-flow Graphs of Linux Kernel Threads

In the Linux kernel, The “kthread create on node” and “kernel thread” function are used to
create kernel threads. The arguments of these functions are the thread name and the thread
function. We traverse merged LLVM IR file and find root function of the kernel thread. We find
45 functions as root functions of the kernel threads.
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In merged LLVM IR file, there are all instructions and variables consisting Linux kernel.
Not all instructions and variables in basic blocks are relevant for CFG. To create CFG of each
function, we collect related information with CFG from basic blocks in merged LLVM IR file.
A function consists of one or more basic blocks. If function consists of several basic blocks, they
have information of predecessors. See Figure 12, keyword “preds =” represents basic block name
of the predecessor of each basic block.

if.end: ;preds = %entry
%14 = load %struct.vdfs xattrtree key** !dbg !3068
%object id6 = getelementptr inbounds 1, !dbg !3068
br i1 %cmp8, %if.then9, label %if.end10, !dbg !3071

Figure 12: Basic block “if.end” has predecessor basic block “entry”.

We traverse all basic blocks of functions in Linux kernel and collect the basic block name,
function name, predecessors of each basic block, static spinlocks and procedure calls. We store
collected information to the structure depicted in Listing 5.

Listing 5: Structure of collected information for CFG

1 struct c f g i n f o m a t i o n
2 {
3 char ∗ l o ck ;
4 char ∗ p r o c e d u r e c a l l ;
5 char ∗ funct ion name ;
6 char ∗ bas ic b lock name ;
7 char ∗ p r e d e c e s s o r s ;
8 } ;

Figure 13 is CFG of function “usblog flush” in Linux kernel. It is generated by LLVM
optimizer and includes all instructions and variables in “usblog flush”. Not all instructions
and variables in basic blocks are needed for deadlock detection of “usblog flush”. We traverse
basic locks of function “usblog flush” and collect information from each basic blocks. Red texts
in Figure 13 are collected information for deadlock detection in function “usblog flush”. We
regenerate CFG of function “usblog flush” using collected information.

See Figure 14. We regenerate CFG of function “usblog flush” using collected information
from basic blocks for deadlock analysis. Regenerated CFG of “usblog flush” has basic block
names, static spinlocks, procedure call and flows of basic blocks. Regenerated CFG makes
problem size tractable.

5 Control-flow Graph Reduction

We link kernel IR files into one IR file. The linked IR file has 25,623 functions. The 45 kernel
threads identified in section are the root nodes on which we perform function inlining to create
the complete CFG of a kernel thread.

The CFGs of large code base may result in intractable problem size for Kronecker-based
deadlock analysis. The CFG of a program is a directed graph G = (N,E) where N is the set
of nodes and E is the set of edges. Not all N of a CFG are relevant for deadlock detection.
Shrinking CFGs is required to ensure tractable problem sizes. We define graph rewrite rules
which eliminate CFG nodes that are irrelevant for deadlock detection as follows.
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entry:
%1 = load i32* opt dtvlogd !dbg
%tobool = icmp ne i32 !dbg !3868
label %if.end4, %if.then1 !dbg

if.end4:
%rlock.i = %struct.raw spinlock* !dbg
semaphore lock %struct.raw spinlock*
%4 = load i32* dlogbuf start

T F

if.then7:
%6 = load dlogbuf start,!dbg
%and8 = and %6, 262143, !dbg
%sub = sub i32 %and8, !dbg
br label %if.end12, !dbg 85

if.else:
%7 = load dlogbuf end,!dbg
%and9 = and i32 %7, !dbg
%8 = load dlogbuf start
br label %if.end12

if.end22:
%rlock.i24 = %struct.raw spinlock*, !dbg
semaphore unlock %struct.raw spinlock*
call @usblog write (i8*)
br label %return, !dbg !3913

return:
ret void, !dbg !3914

Figure 13: CFG of function “usblob flush”
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entry:

if.end4:
semaphore lock

T F

if.then7: if.else:

if.end22:
semaphore unlock
call @usblog write

return:

Figure 14: Regenerated CFG of function “usblob flush” for deadlock analysis.

5.1 Graph Reduction Rules

Rule 1. Let G=(N,E) be a CFG. Let node v 6= u have a single predecessor u. If v has
no synchronization primitive, the transformation is the consumption of node v by node u. The
successor edges of node v become successor edges of node u. The original successor edges of node
u are preserved except for the edge to node v.

See Figure 15 for an example of this rule [13].

u

v

Rule 1 u

Figure 15: Graphical representation of Rule 1

Rule 2. Let u ∈ N. This transformation removes the edge (u, u) ∈ E, which is a self-loop.
If this edge exists and u has no synchronization primitive, self-loop can be eliminated.

See Figure 16 for an example of this rule [13].
We perform the CFG reduction of Rule 1 and Rule 2 during inlining of the kernel thread

functions. We give example as follows.

Example 5. We perform the CFG reduction to Figure 17. Node 4 contains synchronization
primitive in the CFG. Rule 1 is performed to Node 1, Node 2 and Node 3. Rule 2 is performed
to Node 6. Performed result is depicted in Figure 18 (a). Rule 1 is performed to Node 5 and
Node 6. Performed result is depicted in Figure 18 (b).
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u Rule 2 u

Figure 16: Graphical representation of Rule 2
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Figure 17: CFG to perform graph reduction
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(a) Node 2,3 are eliminated
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4

5

7

(b) Node 2,3,6 are eliminated

Figure 18: The intermediate result of CFG reduction

The Rule 1 and Rule 2 are performed to Node 5. Final result of CFG reduction is depicted
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in Figure 19. In the CFG, Node 2,3,4,5,6 are irrelevant nodes with deadlock detection and
eliminated. Node 4 contains synchronization primitive and is the relevant node with deadlock
detection.

We perform the CFG reduction of Rule 1 and Rule 2 during inlining of the kernel thread
function to make problem size tractable for Kronecker algebra calculus.

1start

4

7

Figure 19: The result of CFG reduction

6 Inlining Called Functions into Linux Kernel Threads

We identified 45 concurrent kernel threads. Modeled CFGs of kernel threads contain proce-
dure calls. We inline all procedure calls in Linux kernel threads as follows.

6.1 Inlining of Procedure Calls in CFGs.

Figure 20 (a) contains the source code of the “main” function and procedure call to “sub”
function. Figure 20 (b) contains the source code of the “sub” function called by the “main”
function. The “sub” function is inlined to the “main” function.

1 int main ( void )
2 {
3 int a = 4 , b = 10 ;
4 int r e s u l t = 0 ;
5 i f ( a>b)
6 r e s u l t = sub ( a , b ) ;
7 else
8 r e s u l t = sub (b , a ) ;
9 return 0 ;

10 }

(a) Source codes of “main” function

1 int sub ( int a , int b)
2 {
3 int r e s u l t = −1;
4 i f ( a > 0 && b > 0)
5 r e s u l t = a−b ;
6

7 return r e s u l t ;
8 }

(b) Source codes of “sub” function

Figure 20: Source code of “main” function which calls the function “sub”.

The CFGs of “main” and “sub” functions are depicted in Figure 21. See Figure 21 (a). The
“@sub” in the nodes is a procedure call to function “sub” in the “main” function. To inline
function “sub”, The successor of nodes which have the “@sub” in “main” function is changed to
entry node of CFG of function “sub”. See Figure 21 (b). The final node of function “sub” has
successor node, which is the successor of procedure call node in “main” function.

See Figure 22 for the inlined result of the procedure call. The CFG of function “sub” is
inlined into the CFG of the “main” function. Inlined CFG of function “sub” is shown with red
colour boxes in Figure 22.
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main.entry:

T F

main.if.then:
call @sub

main.if.else:
call @sub

main.if.end:

(a) CFG of function “main”

sub.entry:

T F

sub.land.lhs.true:

T F

sub.if.then:

sub.if.end:

(b) CFG of function “sub”

Figure 21: CFG of “main” function which calls function “sub”

6.2 Inlining Strongly Connected Components.

A directed graph is called strongly connected if there is a path in each direction between
each pair of nodes of the call-graph. A strongly connected component (SCC) of a call-graph is
a subgraph that is strongly connected.

The circular wait is a closed chain of processes, and each process holds at least one resource
needed by the next process in the chain. The circular wait is deadlock condition. SCC is a
closed chain of a procedure calls and can make circular wait. Recursive call in SCC can hold
one resource under the same resource holding by the previous call.

We compute the SCC in the call-graph and find 31 SCCs in Linux kernel To find circular
wait in SCC, we inline the SCC twice. Inlinings twice are sufficient to detect deadlock related
with circular wait by Kronecker algebra calculus.

Figure 23 (a) contains the source code of “multiply” function. Figure 23 (b) contains the
source code of “divide” function. The function “multiply” calls the function “divide”. The
function “divide” calls the function “multiply”. The function “multiply” and “divide” are SCC.

Figure 24 (a) contains the CFG of “multiply” function. Figure 24 (b) contains the CFG of
“divide” function. The “@multiply” is a procedure call to function “multiply” in the “divide”
function. The “@divide” is a procedure call to function “divide” in the “multiply” function.

See Figure 25. We inline function “multiply” into “divide”. Inlined “multiply” function
contains procedure call “@divide” in inlined CFG. We inline “divide” function to procedure
call “@divide” in inlined CFG. We inline “multiply” function to procedure call “@multiply” in
inlined CFG. As a result, “divide” and “multiply” functions are inlined twice and depicted in
Figure 26.

7 Deadlock Detection: Finding Locking Hierarchy Violations

A locking hierarchy is an order on how threads acquire and release the synchronization
primitives for a critical section to prevent deadlocks. To prevent a deadlock between concurrent
threads, synchronization primitives must be acquired and released in the same order in locking
hierarchy. Figure 27 contains locking hierarchy of concurrent threads. One of the threads must
acquire the “Lock A” and then acquire the “Lock B” or “Lock C”. If one of the threads uses the
“Lock B” then needs the “Lock A”, “Lock B” should be released before acquiring the “Lock A”
to avoid the deadlock.
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main.entry:

T F

main.if.then:
call @sub

main.if.else:
call @sub

main.if.end:

sub.entry:

T F

sub.land.lhs.true:

T F

sub.if.then:

sub.if.end:

sub.entry:

T F

sub.land.lhs.true:

T F

sub.if.then:

sub.if.end:

Figure 22: Inlined CFG of main function with function “sub”.
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1 int mult ip ly ( int in )

2 {
3 i f ( in > LIMITE)

4 {
5 in = INIT ;

6 }
7 else

8 {
9 d iv id e ( in ∗3 ) ;

10 }
11 }

(a) Source codes of “multiply” function

1 void d iv id e ( int in )

2 {
3 i f ( in <= 0)

4 {
5 p r i n t f ( ”Check input value . ” ) ;

6 }
7 else

8 {
9 mult ip ly ( in /2 ) ;

10 }
11 }

(b) Source codes of “divide” function

Figure 23: Function “multiply” and “divide” constitute an SCC.

multiply.entry:

T F

multiply.if: multiply.then
call @divide

multiply.end:

(a) CFG of function “multiply”

divide.entry:

T F

divide.if: divide.then
call @multiply

divide.end:

(b) CFG of function “divide”

Figure 24: CFGs of “multiply” and “divide” constitute an SCC.

Finding the violation of locking hierarchy in concurrent threads is deadlock detection. We
find the violation of locking hierarchy by Kronecker algebra as follows.

7.1 Innermost Synchronization Primitives

To avoid a deadlock, Synchronization primitives should be acquired and released in the same
order in locking hierarchy in all kernel threads.

Not all synchronization primitives in kernel thread are relevant with a deadlock. Innermost
synchronization primitive is not relevant with a deadlock. Figure 28 contains the innermost
locks. The “C.lock()” and “C.unlock()” are used in critical section. No other lock operation is
used before “C.unlock()”. “C.lock()” is innermost synchronization primitive in the threads and
not the violation of locking hierarchy.

The innermost synchronization primitives can be eliminated from program. The “C.lock()”
and “C.unlock()” are eliminated from program. The “B.lock()” and “B.unlock()” are used and
no other lock operation is used before “B.unlock()” in “Thread1”. However, The “A.lock()” is
used before “B.unlock()” in the “Thread2”. The “B.lock()” is not innermost synchronization
primitives. The “A.lock()” and “A.unlock()” are used and “B.lock()” is used before “A.unlock()”
in “Thread1”. The “A.lock()” is not innermost synchronization primitive. “Thread1” and
“Thread2” have a potential deadlock because of “A.lock()” and “B.lock()”. We find innermost
synchronization primitives in kernel threads using Kronecker algebra as follows.
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divide.entry:

T F

divide.if: divide.then
call @multiply

divide.end:

multiply.entry:

T F

multiply.if: multiply.then
call @divide

multiply.end:

Figure 25: Inlined CFG of “multiply” function into “divide”function.
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divide.entry:

T F

divide.if:

divide.then
call @multiply

divide.end:

multiply.entry:

T F

multiply.if: multiply.then
call @divide

multiply.end:

divide.entry:

T F

divide.if:

divide.then
call @multiply

divide.end:

multiply.entry:

T F

multiply.if: multiply.then
call @divide

multiply.end:

Figure 26: Inlining result of SCC

Lock A → Lock B → Lock C

Figure 27: Locking hierarchy
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1 void Thread1( void )
2 {
3 A. lock ( ) ;
4 B. lock ( ) ;
5 C. lock ( ) ;
6 // Critical section.

7 C. unlock ( ) ;
8 B. unlock ( ) ;
9 A. unlock ( ) ;

10 }

(a) Locking order in “Thread1” function

1 void Thread2( void )
2 {
3 B. lock ( ) ;
4 A. lock ( ) ;
5 C. lock ( ) ;
6 // Critical section.

7 C. unlock ( ) ;
8 A. unlock ( ) ;
9 B. unlock ( ) ;

10 }

(b) Locking order in “Thread2” function

Figure 28: A potential deadlock between “Thread1” and “Thread2”.

7.2 Regular Expressions

Regular expression of innermost synchronization primitive is depicted in Figure 29. and
represented by (( ∑

j∈J
j 6=i

pj +
∑
j∈J

vj
)∗
pi
( ∑
j∈J
j 6=i

vi
)∗
vi

)∗
Let i is a selected synchronization primitive to check whether i is innermost synchronization
primitive. The J is set of synchronization primitives in the program. The j is the element of J .

1

2

pi vi

∑
j∈J
j 6=i

vi

∑
j∈J
j 6=i

pj +
∑
j∈J

vj

Figure 29: Regular expression of an innermost synchronization primitive

7.3 Example: Finding Innermost Synchronization Primitives

We model Linux kernel to CFGs and inline procedure calls in kernel threads. Kronecker prod-
uct is the simultaneous execution of the program. Finding Innermost synchronization primitives
in kernel thread can be done by Kronecker product.

We use example thread with three semaphores depicted in Figure 30. Figure 30 contains the
CFG of thread T1 and semaphores p1, p2 and p3.

Example 6. We represent matrix Th1 of CFG of thread T1.
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1

2

3

4

5

6

p1

p2

v2

v1

p3

v3

Figure 30: Thread T1 has semaphore p1, p2 and p3.

Th1 =



0 p1 0 0 0 0
0 0 p2 0 0 0
0 0 0 v2 0 0
0 0 0 0 v1 0
0 0 0 0 0 p3
v3 0 0 0 0 0


First, we check whether semaphore p1 is the innermost semaphore in thread T1.
Let i = 1 and J = {p2, p3, v2, v3} in regular expression and represent matrix S1.

S1 =

(
p2 + p3 + v2 + v3 p1

v1 v2 + v3

)
.

Matrix S1 can be represented to matrix K1 + K2 + K3 + K4, where

K1 =

(
p2 p1
v1 v2

)
, K2 =

(
p3 0
0 v3

)
, K3 =

(
v2 0
0 0

)
, K4 =

(
v3 0
0 0

)
.

We simulate Th1 and S1 by Kronecker product as follows.

Th1 ⊗ S1 = Th1 ⊗ (K1 + K2 + K3 + K4) = Th1 ⊗K1 + Th1 ⊗K2 + Th1 ⊗K3 + Th1 ⊗K4
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=



0 0 0 p1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 p2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 v2 0 0 0 0 0
0 0 0 0 0 0 0 v2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 v1 0 0 0
0 0 0 0 0 0 0 0 0 0 p3 0
0 0 0 0 0 0 0 0 0 0 0 0
v3 0 0 0 0 0 0 0 0 0 0 0
0 v3 0 0 0 0 0 0 0 0 0 0



In graph theory, an isomorphism of two graphs is a bijection between the vertex sets of two
graphs. If an isomorphism exists between two graphs, then the graphs are called isomorphic.

The result of Th1 ⊗ S1 is depicted in Figure 31 We find the result of Th1 ⊗ S1 and Th1 is
not isomorphic. As a result, The p1 is not innermost semaphore in thread T1.

1

4

p1

Figure 31: Kronecker product of Th1 and S1

The S2 is matrix about the regular expression of p2 and v2. The S3 is matrix about the
regular expression of p3 and v3. The S2 and S3 are represented as follows.

S2 =

(
p1 + p3 + v1 + v3 p2

v2 v1 + v3

)
, S3 =

(
p1 + p2 + v1 + v2 p3

v3 v1 + v2

)
.

The result of T1 ⊗ S2 and T1 ⊗ S3 are depicted in Figure 32. The result of T1 ⊗ S2 and T1

are isomorphic. The result of T1 ⊗ S3 and T1 are isomorphic. As a result, The p2 and p3 are
innermost semaphores in thread T1.

The CFG of kernel thread is the large graph. We use static spinlocks as a synchronization
primitive for deadlock analysis. To check isomorphism between the kernel thread and static
spinlock, we use a tool named Grail+ [9]. Grail+ is symbolic computation environment for finite-
state machines and regular expressions. Grail+ provides a function to check the isomorphism
between two graphs. We use the function of Grail+ to check isomorphism of kernel thread and
static spinlock.

8 Experimental Results

8.1 Locking Hierarchy Violations in the Linux Kernel

We use Linux kernel version 3.10.28. We compile Linux kernel files using Clang compiler
and get 1,305 IR files and link them to one. We traverse the linked IR file and find 45 thread
functions. These 45 functions are root nodes in the call graph of Linux kernel functions. We
inline all procedure calls into its root nodes. We identify 178 static spinlock variables in the
Linux kernel as a synchronization primitive for deadlock analysis.
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(a) Kronecker product of T1 and S2
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(b) Kronecker product of T1 and S3

Figure 32: Innermost semaphores in thread T1

We check locking hierarchy about 178 static spinlock variables and all threads. In the Linux
kernel, Only one static spinlock is a violation of locking hierarchy. See Listing 6, Static spinlock
variable “panic lock” in “panic” function is a violation of locking hierarchy. There is no unlock
operation in the Linux kernel about “panic lock” variable.

Listing 6: The panic lock variable in the Linux kernel

9 void panic ( const char ∗ fmt , . . . )
10 {
11 stat ic DEFINE SPINLOCK( panic lock ) ;
12 . . .
13

14 i f ( ! spin trylock(&panic lock ) )
15 p a n i c s m p s e l f s t o p ( ) ;
16 . . .
17 }

8.2 Control-flow Graph Reductions

We perform the CFG reduction of Rule 1 and Rule 2 during inlining of the kernel thread
functions. Total reduction in the number of CFG nodes is 92% and depicted in Figure 33.

8.3 Structure Analysis of the Linux Kernel

We analyzed Linux kernel that consists of 1,305 C files. We compiled C files of Linux kernel
and generated 1,305 IR files. We linked LLVM IR files to one IR file. We traversed linked LLVM
IR file and analyzed the structure of Linux kernel for deadlock detection We found call graph
of all procedure calls in Linux kernel. LLVM IR contains CFG information of functions. We
generated CFGs of Linux kernel functions. We inlined all procedure calls into its root nodes
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No. Linux kernel
threads

Number of nodes
before reduction

Number of nodes
after reduction No. Linux kernel

threads
Number of nodes
before reduction

Number of nodes
after eduction

1 call help 41,764 3,253 24 agent work 32,949 2,558

2 aop buff task 33,998 2,689 25 age core 29,302 2,251

3 reply thread 31,696 2,482 26 call user 41,763 3,253

4 wait help 47,152 3,775 27 cpufreq dump 29,322 2,258

5 cpufreq task 29,367 2,256 28 crypto probe 39,561 3,101

6 crypto task 39,183 3,052 29 devtmp 31,585 2,423

7 dlogd 29,645 2,285 30 ca en thread 31,728 2,461

8 front thread 29,709 2,264 31 mark destroy 29,526 2,262

9 event thread 29,317 2,249 32 rq thread 29,414 2,264

10 audit thread 31,696 2,482 33 dbg work 29,309 2,251

11 debugd 29,369 2,260 34 start tcp 30,149 2,322

12 khvc 29,918 2,299 35 kjournal 37,262 2,915

13 memory profile 29,478 2,261 36 mmpd 32,117 2,499

14 scan thread 33,708 2,628 37 swapd 29,945 2,327

15 kthread 38,929 3,016 38 kthread watchdog 29,478 2,272

16 kthread fn 29,340 2,247 39 oop thread 31,187 2,395

17 queue thread 29,440 2,256 40 nb thread 30,509 2,350

18 gp thread 29,661 2,271 41 er thread 29,529 2,265

19 scsi handler 33,126 2,480 42 sd thread 51,823 4,149

20 irq thread 105 6 43 pc symbol 4,680 3,890

21 t2debug 29,366 2,259 44 audit send 31,701 2,483

22 msg wait 29,794 2,278 45 rc msg wait 29,794 2,278

23 work thread 30,704 2,345

Figure 33: Performed CFG reductions per Linux kernel threads

in the call graph and generated inlined CFGs of kernel threads. We analyzed the structure of
Linux kernel for deadlock detection as follows.

• Linux kernel contains 45 functions as root nodes of concurrent threads.

• Linux kernel contains 25,623 functions.

• Linux kernel contains 178 static spinlocks.

• Linux kernel contains 31 SCCs.

Total numbers of called functions in the call graph by Linux kernel threads are depicted in
Figure 34.

9 Conclusions

In this report, we presented a Kronecker algebra-based deadlock analysis for the Linux ker-
nel. To find deadlock in the program, we modeled all possible thread interleavings. Kronecker
algebra simulates thread execution and calculates all interleavings in the program. We intro-
duced Kronecker algebra to find deadlock in the Linux kernel. We provided the example for
deadlock analysis using Kronecker algebra.

CFGs are used as FSMs to model the Linux kernel threads. LLVM IR contains CFG in-
formation. To generate LLVM IR of Linux kernel, we extended the existing Linux kernel build
system for GCC to LLVM compiler using the script.

We used existing LLVM features such as LLVM passes and properties for program analysis.
We presented the stand-alone C++ tool that uses the LLVM pass to model the Linux kernel
threads. Threads in the Linux kernel are represented by CFGs. Modeled kernel threads are
represented by matrices for Kronecker algebra calculus. The Linux kernel has 45 concurrent
threads and communicates via synchronization primitives such as static spinlocks. We detect
synchronization primitives in the Linux kernel using LLVM annotation property.
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No. Linux kernel
threads

Number of called
functions No. Linux kernel

threads
Number of called

functions

1 call help 2,559 24 agent work 1,958

2 aop buff task 1,930 25 age core 3

3 reply thread 1,821 26 call user 2,559

4 wait help 2,854 27 cpufreq dump 1,690

5 cpufreq task 9 28 crypto probe 2,410

6 crypto task 2,381 29 devtmp 1,823

7 dlogd 1,695 30 ca en thread 1,814

8 front thread 1,715 31 mark destroy 1,705

9 event thread 1,693 32 rq thread 12

10 audit thread 1,841 33 dbg work 6

11 debugd 15 34 start tcp 1,742

12 khvc 1,732 35 kjournal 2,144

13 memory profile 1,705 36 mmpd 1,851

14 scan thread 1,980 37 swapd 1,728

15 kthread 2,368 38 kthread watchdog 1,709

16 kthread fn 1,692 39 oop thread 1,784

17 queue thread 1,697 40 nb thread 1,786

18 gp thread 1,725 41 er thread 1,709

19 scsi handler 1,906 42 sd thread 3,157

20 irq thread 6 43 pc symbol 2,349

21 t2debug 15 44 audit send 1,821

22 msg wait 1,722 45 rc msg wait 1,722

23 work thread 1,780

Figure 34: Number of called functions in the call graph per Linux kernel threads

The Linux kernel has 45 concurrent threads and 23 thousand functions. Our deadlock analysis
is for large code-bases. We presented CFG reduction rules and eliminated CFG nodes which are
not relevant for deadlock analysis. CFG reduction makes problem size tractable for Kronecker
algebra calculus. We are able to handle SCCs that occur in the call-graph of Linux kernel
threads. SCCs represent direct or indirect recursive function calls, which may constitute a
deadlock. Repeated inlining up to count N of an N-ary semaphore allows us to detect potential
deadlocks with SCCs in callgraphs.

To detect violations of a semaphore locking hierarchy, we devised a test based on program
path conditions. The test is formulated as a regular-expression-based predicate on all pro-
gram paths across the CFG of a thread. On a well-formed program path, semaphore p()- and
v()-operations match and adhere to a nesting relation. The nesting order reflects the locking
hierarchy. The Kronecker product is applied to test whether the CFG of a thread adheres to a
given predicate. Via predicates, we iteratively determine the innermost semaphore operation of
threads, thereby retrieving and checking the locking hierarchy among threads.

Our experimental results show static spinlock variable under the violation of locking hierarchy
in the Linux kernel. CFG reduction results show the total reduction in the number of CFG nodes.
The structure of Linux kernel shows information for deadlock analysis.

As for future work, we are going to incorporate mutexes and barriers as further synchro-
nization primitives into our deadlock analysis method. In the Linux kernel source code, aliasing
occurs with function pointers passed as arguments with procedure calls. We will perform alias
analysis to create a more precise call graph for Linux kernel threads. Our stand-alone C++ tool
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to model the Linux kernel is the sequential program. We are going to change our stand-alone
C++ tool to parallel processing program for more large-based program analysis.
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